精英家教网 > 高中数学 > 题目详情
8.当x∈(1,2]时,不等式x2+mx+4>0恒成立,则m的取值范围是m>-4.

分析 ①构造函数:f(x)=x2+mx+4,x∈(1,2].②讨论对称轴x=-$\frac{m}{2}$f(x)的单调性,③讨论判别式的符号,从而求出m的范围.

解答 解:根据题意,构造函数:f(x)=x2+mx+4,x∈(1,2].
由于当x∈(1,2]时,不等式x2+mx+4>0恒成立.
①△<0即m2-16<0时,不等式x2+mx+4>0恒成立,解得:-4<m<4,
②△=0即m2-16=0,m=±4时,显然m=-4不合题意,m=4符合题意,
③△>0时,只需$\left\{\begin{array}{l}{△{=m}^{2}-16>0}\\{-\frac{m}{2}<1}\\{f(1)=1+m+4≥0}\end{array}\right.$或$\left\{\begin{array}{l}{△{=m}^{2}-16>0}\\{-\frac{m}{2}>2}\\{f(2)=4+2m+4>0}\end{array}\right.$,解得:m>4,
综上:m>-4,
故答案为:m>-4.

点评 本题考查二次函数图象讨论以及单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.执行下面的程序框图,如果输入的N=4,那么输出的S=(  )
A.1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$B.1+$\frac{1}{2}$+$\frac{1}{3×2}$+$\frac{1}{4×3×2}$
C.1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$+$\frac{1}{5}$D.1+$\frac{1}{2}$+$\frac{1}{3×2}$+$\frac{1}{4×3×2}$+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列四个不等式:①当x∈R时,sin x+cos x>-$\frac{3}{2}$;②对于正实数x,y及任意实数α,有xsin2α•ycos2α<x+y;③x是非0实数,则|x+$\frac{1}{x}$|≥2;④当α,β∈( 0,$\frac{π}{2}$)时,|sin α-sin β|≤|α-β|.在以上不等式中不成立的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a、b表示不同的直线,α表示平面,其中正确的命题有(  )
①若a∥α,b∥α,则a∥b;②若a∥b,b∥α,则a∥α;③若a⊥α,b⊥α,则a∥b;④若a、b与α所成的角相等,则a∥b.
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若方程ax-x-a=0有两个实数解,则a的取值范围是(  )
A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平行四边形ABCD中,点E是BC的中点,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{DE}$=(  )
A.$\overrightarrow{a}-\frac{1}{2}\overrightarrow{b}$B.$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$C.-$\overrightarrow{a}-\frac{1}{2}\overrightarrow{b}$D.-$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法不正确的是(  )
A.若求得的回归方程为$\widehat{y}$=0.9x-0.3,则变量y和x之间具有正的相关关系
B.样本数据得到的回归直线必过样本点的中心($\overline{x}$,$\overline{y}$)
C.残差平方和$\sum_{i=1}^{n}$(yi-$\widehat{y}$i2越小,说明拟合的效果越好
D.用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画回归效果,R2的值越小,说明拟合的效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在圆内画1条线段,将圆分割成两部分;画2条相交线段,彼此分割成4条线段,将圆分割成4部分;画3条线段,彼此最多分割成9条线段,将圆最多分割成7部分;画4条线段,彼此最多分割成16条线段,将圆最多分割成11部分.

(1)猜想:圆内两两相交的n条线段,彼此最多分割成多少条线段?
(2)记在圆内画n条线段,将圆最多分割成an部分,归纳出an+1与an的关系.
(3)猜想数列{an}的通项公式,根据an+1与an的关系及数列的知识,证明你的猜想是否成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知an=$\frac{n+10}{2n+1}$,Tn是数列{an}的前n项积,当Tn取到最大值时,n的值为(  )
A.9B.8C.8或9D.9或10

查看答案和解析>>

同步练习册答案