精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
分析:(I)设F(c,0),则直线l的方程为x-y-c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.
(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使
OP
=
OA
+
OB
成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.
解答:解:(I)设F(c,0),直线l:x-y-c=0,
由坐标原点O到l的距离为
2
2

|0-0-c|
2
=
2
2
,解得c=1
e=
c
a
=
3
3
,∴a=
3
,b=
2

(II)由(I)知椭圆的方程为C:
x2
3
+
y2
2
=1

设A(x1,y1)、B(x2,y2
由题意知l的斜率为一定不为0,故不妨设l:x=my+1
代入椭圆的方程中整理得(2m2+3)y2+4my-4=0,显然△>0.
由韦达定理有:y1+y2=-
4m
2m2+3
y1y2=-
4
2m2+3
,①
假设存在点P,使
OP
=
OA
+
OB
成立,则其充要条件为:
点P的坐标为(x1+x2,y1+y2),
点P在椭圆上,即
(x1+x2)2
3
+
(y1+y2)2
2
=1

整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.
又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、
故2x1x2+3y1y2+3=0②
将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得m2=
1
2

y1+y2=
2
2
或-
2
2

x1+x2=-
4m2
2m2+3
+2=
3
2
,即P(
3
2
,±
2
2
)

m=
2
2
时,P(
3
2
,-
2
2
),l:x=
2
2
y+1

m=-
2
2
时,P(
3
2
2
2
),l:x=-
2
2
y+1
点评:本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案