精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中中,是边长为的等边三角形,底面为直角梯形,

1)证明:

2)求二面角的余弦值.

【答案】1)详见解析;(2

【解析】

(1)取的中点为,连接,由是等边三角形可得,再由底面为直角梯形,结合已知的边长可证得,于是得平面,从而证得结果;

2)由条件可得可知两两垂直,所以以为坐标原点建立直角坐标系,利用向量法求出二面角的余弦值.

1)证明:取的中点为,连接,因为是等边三角形,所以

因为在直角梯形中,,所以

所以为等腰三角形,所以

因为,所以平面

因为平面,所以

2)解:因为为正三角形边上的高,所以

因为,所以,由(1)可知两两垂直.

为坐标原点建立直角坐标系,则

设平面的法向量为

,

设平面的法向量为

,,则

因为二面角为锐二面角,所以其余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(甲),是边长为的等边三角形,点分别为的中点,将沿折成四棱锥,使,如图(乙).

1)求证:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节是我国民间为纪念爱国诗人屈原的一个传统节日.某市为了解端午节期间粽子的销售情况,随机问卷调查了该市1000名消费者在去年端午节期间的粽子购买量(单位:克),所得数据如下表所示:

购买量

人数

100

300

400

150

50

将烦率视为概率

1)试求消费者粽子购买量不低于300克的概率;

2)若该市有100万名消费者,请估计该市今年在端午节期间应准备多少千克棕子才能满足市场需求(以各区间中点值作为该区间的购买量).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是t为参数),直线l与曲线C相交于AB两点.

1)求的长;

2)求点AB两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,把满足条件(对任意的)的所有数列构成的集合记为.

1)若数列的通项为,判断是否属于,并说明理由;

2)若数列的通项为,判断是否属于,并说明理由;

3)若数列是等差数列,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在非零实数,使得点都在的图象上,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥中,平面平面

1)证明:

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为,以为折痕把折起,使点到达点的位置,且.

(Ⅰ)证明:平面平面

(Ⅱ)若的中点,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗某病毒的药(分别称为甲药,乙药)的疗效,某医疗团队随机地选取了服用甲药的患者和服用乙药的患者进行研究,根据研究的数据,绘制了如图1等高条形图

.

1)根据等高条形图,判断哪一种药的治愈率更高,不用说明理由;

2)为了进一步研究两种药的疗效,从服用甲药的治愈患者和服用乙药的治愈患者中,分别抽取了10名,记录他们的治疗时间(单位:天),统计并绘制了如图2茎叶图,从茎叶图看,哪一种药的疗效更好,并说明理由;

3)标准差s除了可以用来刻画一组数据的离散程度外,还可以刻画每个数据偏离平均水平的程度,如果出现了治疗时间在(3s3s)之外的患者,就认为病毒有可能发生了变异,需要对该患者进行进一步检查,若某服用甲药的患者已经治疗了26天还未痊愈,请结合(2)中甲药的数据,判断是否应该对该患者进行进一步检查?

参考公式:s

参考数据:48.

查看答案和解析>>

同步练习册答案