【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )
A. B. C. D.
【答案】A
【解析】
由已知条件推导出曲线C2:y2=4x.,,由
AB⊥BC,推导出,由此能求出的取值范围.
∵椭圆C1:+=1的左右焦点为F1,F2,
∴F1(﹣1,0),F2(1,0),直线l1:x=﹣1,
设l2:y=t,设P(﹣1,t),(t∈R),M(x,y),
则y=t,且由|MP|=|MF2|,
∴(x+1)2=(x﹣1)2+y2,
∴曲线C2:y2=4x.
∵A(1,2),B(x1,y1),C(x2,y2)是C2上不同的点,
∴,,
∵AB⊥BC,
∴=(x1﹣1)(x2﹣x1)+(y1﹣2)(y2﹣y1)=0,
∵,,
∴(﹣4)(﹣)+=0,
∵y1≠2,y1≠y2,
∴,
整理,得,
关于y1的方程有不为2的解,
∴,且y2≠﹣6,
∴0,且y2≠﹣6,
解得y2<﹣6,或y2≥10.
故选:A.
科目:高中数学 来源: 题型:
【题目】已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上. (Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2: =1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为 .直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学根据2002﹣2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m, ,n,已知三个社团他都能进入的概率为 ,至少进入一个社团的概率为 ,且m>n.
(1)求m与n的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)证明:f(x)≥2 ;
(2)若当m=2时,关于实数x的不等式f(x)≥t2﹣ t恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为 ,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com