精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )

A. B. C. D.

【答案】A

【解析】

由已知条件推导出曲线C2:y2=4x.,由

ABBC,推导出,由此能求出的取值范围.

∵椭圆C1+=1的左右焦点为F1,F2

F1(﹣1,0),F2(1,0),直线l1:x=﹣1,

l2:y=t,设P(﹣1,t),(tR),M(x,y),

y=t,且由|MP|=|MF2|

(x+1)2=(x﹣1)2+y2

∴曲线C2:y2=4x.

A(1,2),B(x1,y1),C(x2,y2)是C2上不同的点,

ABBC,

=(x1﹣1)(x2﹣x1+(y1﹣2)(y2﹣y1)=0,

﹣4)(+=0,

y12,y1y2

整理,得

关于y1的方程有不为2的解,

,且y2﹣6,

0,且y2﹣6,

解得y2﹣6,或y210.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上. (Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2 =1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为 .直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各点中,在不等式表示的平面区域内的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学根据2002﹣2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m, ,n,已知三个社团他都能进入的概率为 ,至少进入一个社团的概率为 ,且m>n.
(1)求m与n的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)证明:f(x)≥2
(2)若当m=2时,关于实数x的不等式f(x)≥t2 t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,若直线上至少存在三个点,使得是直角三角形,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案