试题分析:设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(其中d>0);
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20;
由
(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=
所以,最小的1分为a-2d=20-
,故答案为
。
点评:解决该试题的关键是设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(d>0);则由五个人的面包和为100,得a的值;由较大的三份之和的
是较小的两份之和,得d的值;从而得最小的1分a-2d的值.