精英家教网 > 高中数学 > 题目详情
15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号求得sinα及cosα的值.

解答 解:∵已知tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,sin2α+cos2α=1,∴α为第一象限角或α为第三象限角,
当α为第一象限角时,sinα=$\frac{4}{5}$ 及cosα=$\frac{3}{5}$;
当α为第三象限角时,sinα=-$\frac{4}{5}$ 及cosα=-$\frac{3}{5}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上单调递增,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A1B1C1D1中,点H是棱B1C1中点,则四边形BDD1H是(  )
A.平行四边形B.矩形C.空间四边形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的函数f(x),g(x),其中f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=a2x3+x2+a3(a≠0)
(1)求f(x)和g(x)的解析式;
(2)命题P:对任意x∈[1,2],都有f(x)≥1,命题Q:存在x∈[-2,3],使g(x)≥17,若P∨Q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:(lg5)2+lg2•lg50-log89•log2732=-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,点P(2,1)为抛物线C:y=$\frac{{x}^{2}}{4}$上的定点,A,B为抛物线C上两个动点.
(1)若直线PA与PB的倾斜角互补,证明:直线AB的斜率为定值;
(2)若PA⊥PB,直线AB是否经过定点?若是,求出该定点,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)设F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求实数a的值;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n≥2时且n∈N*时,求证:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两条直线mx+y-n=0与x+my+1=0平行的充要条件是(  )
A.m=1且n≠1B.m=-1且n≠1
C.m=±1D.$\left\{\begin{array}{l}m=1\\ n≠-1\end{array}\right.$或$\left\{\begin{array}{l}m=-1\\ n≠1\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=2x-3x+4的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案