精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数是自然对数的底数,曲线在点处的切线与轴平行

1的值

2的单调区间

3其中的导函数证明:对任意

【答案】12单调递增区间是单调递减区间是3证明见解析

【解析】

试题分析:1求导可得 21知,,再利用导数工具进行求解32可知,当,故只需证明时成立,再利用导数工具进行证明

试题解析:1由已知

21知,

上是减函数

从而

从而

综上可知,的单调递增区间是单调递减区间是

32可知,当

故只需证明时成立

所以当取得最大值

所以

综上,对任意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三次函数,下列命题正确的是 .

函数关于原点中心对称;

两不同的点为切点作两条互相平行的切线,分别与交于两点,则这四个点的横坐标满足关系

为切点,作切线与图像交于点,再以点为切点作直线与图像交于点,再以点作切点作直线与图像交于点,则点横坐标为

,函数图像上存在四点,使得以它们为顶点的四边形有且仅有一个正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,),且数列是首项为2,公差为2的等差数列.

(1)若,当时,求数列的前项和

(2)设,如果中的每一项恒小于它后面的项,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个长方体的平面展开图及该长方体的直观图的示意图如图所示.

(1)请将字母标记在长方体相应的顶点处(不需说明理由);

(2)在长方体中,判断直线与平面的位置关系,并证明你的结论;

(3)在长方体中,设的中点为,且,求证:

平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1在区间上画出函数的图象

2设集合试判断集合之间的关系并给出证明

3求证在区间的图象位于函数图象的上方

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是四棱锥的直观图,其正(主)视图和侧(左)视图均为直角三角形,俯视图外框为矩形,相关数据如图2所示.

(1)设中点为,在直线上找一点,使得平面,并说明理由;

(2)若二面角的平面角的余弦值为,求四棱锥的外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴正半轴上的圆与直线相切,与轴交于两点,且.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点,若设点的重心,当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2b4,3b3成等差数列.

(1)求{an}与{bn}的通项公式;

(2)令cn= ,若{cn}的前项和为Tn,求证:Tn<6.

查看答案和解析>>

同步练习册答案