精英家教网 > 高中数学 > 题目详情

【题目】下列说法中正确的个数是(

1)平面与平面都相交,则这三个平面有2条或3条交线

2)如果平面外有两点到平面的距离相等,则直线

3)直线不平行于平面,则不平行于内任何一条直线

A.0B.1C.2D.3

【答案】A

【解析】

在(1)中,分平面平行和不平行进行讨论,即可得到此三个平面的交线条数可能是1条、2条或3条;在(2)中,在平面的同侧,可判断出直线和平面平行,在平面的异侧,可判断出直线和平面相交;在(3)中,直线可能在平面内,此时内任何一条直线相交或平行.

1)平面与平面都相交,

过平面的交线时,这三个平面有1条交线,

,各有一条交线,共有2条交线.

,,,3条交线

则这三个平面有1条或2条或3条交线,故(1)错误;

在(2)中,如果平面外有两点到平面的距离相等,

如图所示:

若平面外有两点到平面的距离相等,

则直线和平面可能平行或可能相交,故(2)错误;

在(3)中,直线不平行于平面,可能在平面内,此时内任何一条直线相交或平行,故(3)错误.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,234567 89表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,EF分别为ABCD的中点,MDF中点.现将四边形BEFC沿EF折起,使平面平面AEFD,得到如图所示的多面体.在图中,

1)证明:

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lg(k∈R,且k>0)

(1)求函数f(x)的定义域;

(2)若函数f(x)[10,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列中,,公差,若 ,则数列的前项和的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828
span>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.

最喜欢的球类运动

足球

篮球

排球

乒乓球

羽毛球

网球

人数

a

20

10

15

b

5

1)求的值;

2)将足球、篮球、排球统称为大球,将乒乓球、羽毛球、网球统称为小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调性;

(2)当时,恒成立,求整数的最大值.

查看答案和解析>>

同步练习册答案