精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠C是直角,平面ABC外有一点P,PC=24,点P到直线AC、BC的距离PD和PE都等于6,求:
(1)点P到平面ABC的距离PF;
(2)PC与平面ABC所成的角.

【答案】分析:(1)连接EF,FD,FC,证明四边形ECDF是矩形,可得结论;
(2)由题意,∠PCF为直线PC与面ABC所成的角,即可求出结论.
解答:解:(1)作PE,PD分别垂直于BC,BA,设PF垂直面ABC于F,
连接EF,FD,FC,
∵EP⊥CE,PF⊥CE,
∴CE⊥面PEF,∴CE⊥EF
同理,CD⊥DF
∵∠C是直角,
∴四边形ECDF是矩形
∴EC=DF
Rt△PEC中,PE=6,PC=24,∴EC==6
Rt△PDF中,PF==12
(2)由题意,PF垂直面ABC于F,∠PCF为直线PC与面ABC所成的角.
∵sin∠PCF==,∴∠PCF=30°
即直线PC与面ABC所成的角为30°
点评:本题考查空间距离与角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案