精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

(1)当时,函数的单调递减区间为,单调递增区间为
(2);(3)详见解析.

解析试题分析:(1)先求出函数的定义域求出,然后将代入函数的解析式,求出导数,并利用导数求出函数的减区间与增区间 ;(2)求出,并求出方程,对的符号以及是否在区间内进行分类讨论,结合函数的单调性确定函数上的最小值;(3)利用分析法将不等式等价转化为,然后令,将原不等式等价转化为,利用(1)中的结论进行证明.
试题解析:(1)函数的定义域为,当时,,则
解不等式,得;解不等式,得
故函数的单调递减区间为,单调递增区间为
(2)
时,,此时函数在区间上单调递减,
函数处取得最小值,即
时,令
时,即当,此时函数在区间上单调递减,
函数处取得最小值,即
,即当时,当,当时,
此时函数处取得极小值,亦即最小值,

综上所述,
(3)要证不等式,即证不等式,即证不等式
即证不等式
,则 则,故原不等式等价于
即不等式上恒成立,
由(1)知,当时,函数在区间上单调递增,
即函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若,求的单调区间;
(Ⅱ) 若对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)如果函数在区间上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点(是自然对数的底数)?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数处取得极值,且函数只有一个零点,求的取值范围.
(2)若函数在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

同步练习册答案