精英家教网 > 高中数学 > 题目详情

【题目】一批产品共10件,其中3件是不合格品,用下列两种不同方式从中随机抽取2件产品检验:

方法一:一次性随机抽取2件;

方法二:先随机抽取1件,放回后再随机抽取1.

记方法一抽取的不合格产品数为.记方法二抽取的不合格产品数为.

1)求两种抽取方式下的概率分布列;

2)比较两种抽取方式抽到的不合格品平均数的大小?并说明理由.

【答案】1的分布列见解析;(2)平均数相等,理由见解析.

【解析】

1可取的值为012,且服从超几何分布,计算对应的概率,列出频率分布列;可取的值为012,且服从二项分布,计算对应的概率,列出频率分布列;

2)分别计算方法一与方法二中的平均数(期望),比较结果即可.

1)方法一中随机变量可取的值为012,且服从超几何分布,

于是

因此的频率分布可表示为下表:

0

1

2

方法二中随机变量可取的值为012,且服从二项分布,

于是

因此的频率分布可表示为下表:

0

1

2

2)由(1)知,方法一中的数学期望为

方法二中的数学期望为

所以两种方式抽到的不合格品平均数相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】首届中国国际进口博览会于2018年11月5日至10日在上海的国家会展中心举办.国家展、企业展、经贸论坛、高新产品汇集……首届进博会高点纷呈.一个更加开放和自信的中国,正用实际行动为世界构筑共同发展平台,展现推动全球贸易与合作的中国方案.

某跨国公司带来了高端智能家居产品参展,供购商洽谈采购,并决定大量投放中国市场.已知该产品年固定研发成本30万美元,每生产一台需另投入90美元.设该公司一年内生产该产品万台且全部售完,每万台的销售收入为万美元,

(1)写出年利润(万美元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)

(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任利用周末时间对该班级年最后一次月考的语文作文分数进行统计,发现分数都位于之间,现将所有分数情况分为共七组,其频率分布直方图如图所示,已知.

1)求频率分布直方图中的值;

2)求该班级这次月考语文作文分数的平均数和中位数.(每组数据用该组区间中点值作为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的球面上有两点,且,球心为,若是球面上的动点,且二面角的大小为,则四面体的外接球表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.

1)估计这次考试的平均分;

2)假设分数在[90100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95769788691006个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】梯形中,,过点,交(如图1.现沿折起,使得,得四棱锥(如图2.

1)求证:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解大学生对冰壶运动的兴趣,随机从某校学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

20

15

合计

100

2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:参考公式1.);2.,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设函数(),讨论的极值点个数;

2)设直线为函数的图像上一点处的切线,试探究:在区间上是否存在唯一的,使得直线与曲线相切.

查看答案和解析>>

同步练习册答案