精英家教网 > 高中数学 > 题目详情
16.下列结论中:
①若(x,y)在映射f的作用下的象是(x+2y,2x-y),则在映射f下,(3,1)的原象为(1,1);
②若函数f(x)满足f(x-1)=f(x+1),则f(x)的图象关于直线x=1对称;
③函数y=|3-x2|-a(a∈R)的零点个数为m,则m的值不可能为1;
④函数f(x)=log2(3x2-ax+5)在(-1,+∞)上是增函数,则实数a的取值范围是[-8,-6].
其中正确结论的序号是①③④(请将所有正确结论的序号都填上)

分析 对4个命题分别进行判断,即可得出结论.

解答 解:①设(3,1)的原象(a,b),∵(x,y)在映射f的作用下的象是(x+2y,2x-y),∴a+2b=3,2a-b=1,∴a=1,b=1,故(3,1)的原象为(1,1),正确;
②若函数f(x)满足f(x-1)=f(x+1),则f(x)的周期为2,不正确;
③函数y=|3-x2|-a(a∈R)的零点个数为0,2,3,4,则m的值不可能为1,正确;
④设g(x)=3x2-ax+5,g(x)在(-1,+∞)上是增函数,g(-1)≥0,∴$\left\{\begin{array}{l}{\frac{a}{6}≤-1}\\{8+a≥0}\end{array}\right.$,∴实数a的取值范围是[-8,-6],正确. 
故答案为:①③④.

点评 本题考查映射,函数的周期性,函数的零点,复合函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.曲线y=$\frac{ax}{x-2}$在点(1,-a)处的切线经过点P(2,-3),则a等于(  )
A.1B.-2C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}为等差数列,a3=8,a9=20,求a13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线上横坐标为$\frac{1}{2}$的点到抛物线顶点的距离与该点到抛物线准线的距离相等.
(1)求抛物线C的方程;
(2)设直线x-my-6=0与抛物线C交于A、B两点,若∠AFB=90°,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:直线y=(2m-3)x-m的图经过第一象限,q:方程$\frac{{x}^{2}}{1-m}$-y2=1表示双曲线,若命题p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知空间非零向量$\overrightarrow{{s}_{1}}$,$\overrightarrow{{s}_{2}}$,则“cos<$\overrightarrow{{s}_{1}}$,$\overrightarrow{{s}_{2}}$>=$\frac{1}{2}$”是“$\overrightarrow{{s}_{1}}$与$\overrightarrow{{s}_{2}}$的夹角为$\frac{π}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求过点(3,-2),且垂直于直线3x-y+5=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列{an}的前n项和为Sn,若S2=7,S6=91,则S4=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则此几何体的体积等于(  )
A.45B.36C.30D.6

查看答案和解析>>

同步练习册答案