精英家教网 > 高中数学 > 题目详情
(2012•江苏三模)已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an
(1)求数列{an}的通项公式;
(2)设区间[
an
3n
an+1
3(n+1)
]
中的整数个数为bn,求数列{bn}的通项公式.
分析:(1)由nan+1=2(n+1)an,得
an+1
an
=
2(n+1)
n
,利用叠乘法,即可求得数列{an}的通项公式;
(2)由(1)确定区间左右端点对应的通项,分n为奇数、偶数时讨论,即可求数列{bn}的通项公式.
解答:解:(1)由nan+1=2(n+1)an,得
an+1
an
=
2(n+1)
n
,当n≥2时,
an
an-1
=
2n
n-1

所以,当n≥2时,an=
an
an-1
an-1
an-2
•…•
a2
a1
a1=
2n
n-1
2(n-1)
n-2
•…
2•2
1
•2=n•2n

此式对于n=1也成立,所以数列{an}的通项公式为an=n•2n.…(4分)
(2)由(1)知,
an
3n
=
2n
3
=
(3-1)n
3
=
C
0
n
3n-1-
C
1
n
3n-2+…+(-1)n-1
C
n-1
n
+
(-1)n
3
an+1
3(n+1)
=
2n+1
3
=
(3-1)n+1
3
=
C
0
n+1
3n-
C
1
n+1
3n-1+…+(-1)n
C
n
n+1
+
(-1)n+1
3
,…(8分)
当n为奇数时,bn=(
2n+1
3
-
1
3
)-(
2n
3
+
1
3
)+1=
2n+1
3

当n为偶数时,bn=(
2n+1
3
+
1
3
-1)-(
2n
3
-
1
3
)=
2n-1
3
.…(10分)
点评:本题考查数列递推式,考查数列通项,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏三模)如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)在平面直角坐标系中,不等式组
y≥0
x-2y≥0
x+y-3≤0
表示的区域为M,t≤x≤t+1表示的区域为N,若1<t<2,则M与N公共部分面积的最大值为
5
6
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)假定某人每次射击命中目标的概率均为
12
,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

同步练习册答案