精英家教网 > 高中数学 > 题目详情
已知f(x)=
x+2,(x≤-1)
x2,(-1<x<2)
2x,(x≥2)

(1)求f[f(1.5)]值;
(2)若f(x)=3,求x的值.
考点:函数的值
专题:函数的性质及应用
分析:(1)根据分段函数,直接带入即可得到结论.
(2)讨论x的取值范围,解方程即可得到结论.
解答: 解:(1)由分段函数可得f(1.5)=(
3
2
)2
=
9
4

f(
9
4
)=2×
9
4
=
9
2
,即,f[f(1.5)]=
9
2

(2)若x≤-1,由f(x)=3,得x+2=3,解得x=1不成立.
若-1<x<2,由f(x)=3,得x2=3,解得x=
3
,成立.
若x≥2,由f(x)=3,得2x=3,解得x=
3
2
,不成立.
综上x=
3
点评:本题主要考查函数值的计算,根据函数的表达式,进行分类讨论是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在复平面内,复数z对应的点在第一象限,且满足z2+2
.
z
=2,则复数z的共轭复数
.
z
的虚部为(  )
A、1B、-iC、-1D、i

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]表示不超过x的最大整数,如[1.5]=1,[-1.5]=-2,若函数f(x)=
1-ex
1+ex
,则函数g(x)=[f(x)]+[f(-x)]的值域为(  )
A、{-1}
B、{-1,0,1}
C、{0}
D、{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和Sn满足S3=21,S5=25.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,a1=1,an=
Sn
n
+n-1.
(1)求an
(2)若存在二次函数f(x)=ax2(a≠0),使数列{
f(n)
anan+1
}前n项和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AE⊥平面DEC,四边形ABCD为正方形,M,N分别是线段BE、DE中点.
(1)求证:MN∥平面ABCD;
(2)若
AE
EC
=
1
3
,求EC与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角α,β满足sinβ=mcos(α+β)•sinα(m>0,α+β≠
π
2
),若x=tanα,y=tanβ,
(1)求y=f(x)的表达式;
(2)当α∈[
π
4
π
2
)时,求(1)中函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差大于零的等差数列,数列{bn}为等比数列,且a1=b1=2,a2-b2=1,a3+b3=16.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=abn,数列{cn}前n项的和为Sn,集合A={n∈N*|Sn>6•2n+n2-8n},求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(
π
2
,π),cosθ=-
4
5
,求sin2θ及cos(θ+
π
3
)的值.

查看答案和解析>>

同步练习册答案