精英家教网 > 高中数学 > 题目详情

焦点分别为F1,F2的椭圆过点M(2,1),抛物线的准线过椭圆C的左焦点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)不过M的动直线l交椭圆C于A、B两点,若=0,求证:直线l恒过定点,并求出该定点的坐标.

考点:

直线与圆锥曲线的关系;椭圆的标准方程.

专题:

压轴题;圆锥曲线的定义、性质与方程.

分析:

(Ⅰ)由抛物线方程写出其准线方程,从而求出椭圆焦点坐标,把点M的坐标代入椭圆方程后,结合a2=b2+c2可求椭圆方程;

(Ⅱ)分直线l垂直于坐标轴和不垂直坐标轴两种情况进行讨论,直线垂直坐标轴时,把直线方程代入椭圆方程求出A,B的坐标,由=0解出m的值,直线不垂直坐标轴时,设出直线方程的斜截式,和椭圆方程联立后由判别式大于0得到直线斜率和在y轴上的截距满足的关系式,再由=0把直线的截距用斜率表示,代回直线方程后由线系方程可得直线恒过定点.

解答:

(Ⅰ)解:由2p=,∴p=,∴抛物线的准线方程为

∴椭圆方程可化为,又椭圆过点M(2,1),

,则a4﹣8a2+12=0,

∵a2>3,解得:a2=6.

∴所求椭圆的方程为

(Ⅱ)证明:①若直线l⊥x轴,直线l可设为x=m(m≠2),则直线l与椭圆交于

,得

即3m2﹣8m+4=0.

解得:m=2(舍)或

故直线l的方程为

②若直线l与x轴不垂直,可设直线l的方程为y=kx+n.

直线l与椭圆交于A(x1,y1),B(x2,y2).

⇒(1+2k2)x2+4knx+2n2﹣6=0.

由△>0,得:(4kn)2﹣4(1+2k2)(2n2﹣6)>0,即6k2﹣n2+3>0.

由根与系数关系得:

得:(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=0,

即x1x2﹣2(x1+x2)+y1y2﹣(y1+y2)+5=0,

又y1=kx1+n,y2=kx2+n,

∴4k2+8kn+(3n+1)(n﹣1)=0,即(2k+3n+1)(2k+n﹣1)=0.

或n=﹣2k+1.

或n=﹣2k+1满足△>0.

∴直线l为或y=kx﹣2k+1=k(x﹣2)+1.

由于直线l不过M,∴直线y=kx﹣2k+1=k(x﹣2)+1不合题意.

∴直线l为

综合①②,直线l为为

故直线l恒过定点

点评:

本题考查了椭圆标准方程的求法,考查了直线和圆锥曲线的位置关系,考查了分类讨论的数学思想,证明直线l恒过定点时,综合考查了向量知识、直线系方程及学生的运算能力,此题属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.若动点M满足
F1M
=
F1A
+
F1B
+
F1O
(其中O为坐标原点),求点M的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为
2
3
3
,左、右焦点分别为F1、F2,在双曲线C上有一点M,使MF1⊥MF2,且△MF1F2的面积为.
(1)求双曲线C的方程;
(2)过点P(3,1)的动直线 l与双曲线C的左、右两支分别交于两点A、B,在线段AB上取异于A、B的点Q,满足|AP|•|QB|=|AQ|•|PB|,证明:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(  )
A、
1
2
3
2
B、
2
3
或2
C、
1
2
2
D、
2
3
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得
PF1
PF2
=e
,则该离心率e的取值范围是
[
2
-1,1)
[
2
-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右两焦点分别为F1,F2,P是椭圆C上的一点,且在x轴的上方,H是PF1上一点,若
PF2
F1F2
=0,
OH
PF1
=0,|
OH
|=λ|
OF1
|
λ∈[
1
3
1
2
]
(其中O为坐标原点).求椭圆C离心率e的最大值.

查看答案和解析>>

同步练习册答案