精英家教网 > 高中数学 > 题目详情
1.已知随机变量ξ服从正态分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,则关于x的二项式(x2-$\frac{a}{x}$)3的展开式的常数项为(  )
A.2B.-2C.12D.-12

分析 利用随机变量ξ服从正态分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,利用展开式的通项公式,求出常数项.

解答 解:由题意,a=2,关于x的二项式(x2-$\frac{a}{x}$)3的展开式的通项为${T}_{r+1}={C}_{3}^{r}•(-2)^{r}•{x}^{6-3r}$.
令6-3r=0,则r=2,∴展开式的常数项为${C}_{3}^{2}•4$=12,
故选C.

点评 本题考查正态分布的对称性,考查二项式定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若$f(x)=\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}\right.$,则f[f(1)]=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=x2+3x-ex在点(0,f(0))处的切线的方程为(  )
A.y=x-1B.y=x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{{a}_{n}}{{b}_{n}}$=$\frac{3n+21}{n+1}$,则$\frac{{S}_{15}}{{T}_{15}}$=(  )
A.$\frac{33}{8}$B.6C.5D.$\frac{69}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为3.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为$\frac{2}{3}$,则抛物线C2的方程为(  )
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果函数f(x)=lnx+ax2-2x有两个不同的极值点,那么实数a的范围是$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)中,椭圆长轴长是短轴长的$\sqrt{3}$倍,短轴的一个端点与两个焦点构成的三角形的面积为$\frac{{5\sqrt{2}}}{3}$.
(1)求椭圆C的标准方程;
(2)已知动直线y=k(x+1)与椭圆C相交与A,B两点,若线段AB的中点的横坐标为-$\frac{1}{2}$,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC的两个顶点为A(-1,0),B(1,0),△ABC周长为6,则C点轨迹为以A,B为焦点的椭圆(除去椭圆与x轴的交点),方程为$\frac{x^2}{4}+\frac{y^2}{3}=1({y≠0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个几何体的三视图如图所示,那么这个几何体的表面积是16+2$\sqrt{5}$,体积是6

查看答案和解析>>

同步练习册答案