精英家教网 > 高中数学 > 题目详情
已知点Pn(an,bn)(n∈N*)都在直线l:y=2x+2上,P1为直线l与x轴的交点,数列{an}成等差数列,公差为1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若f(n)=
an,n为奇数
bn,n为偶数
问是否存在k∈N*,使得f(k+5)=2f(k)-5成立?若存在,求出k的值,若不存在,说明理由;
(Ⅲ)求证:
1
|p1p2|2
+
1
|p1p3|2
+…+
1
|p1pn|2
2
5
(n≥2,n∈N*).
分析:(Ⅰ)由题意知P1(-1,0),a1=-1,b1=0,由此可知an=n-2,bn=2n-2.
(Ⅱ)若k为奇数,则f(k)=ak=k-2f(k+5)=bk+5=2k+8∴2k+8=2(k-2)-5无解.若k为偶数,则f(k)=2k-2,f(k+5)=k+3,由此可知存在k=4使f(k+5)=2f(k)-5成立.
(Ⅲ)|
p1pn
|2=(n-1)2+4(n-1)2=5(n-1)2
,由此入手能够证明,当n≥2,n∈N*时,
1
|p1p2|2
+
1
|p1p3|2
+…+
1
|p1pn|2
2
5
成立.
解答:解:(Ⅰ)由题意知P1(-1,0)(1分)
∴a1=-1,b1=0(2分)
∴an=a1+(n-1)•1=-1+n-1=n-2
∴bn=2an+2=2(n-2)+2=2n-2
(Ⅱ)若k为奇数,
则f(k)=ak=k-2f(k+5)=bk+5=2k+8∴2k+8=2(k-2)-5无解(6分)
若k为偶数,
则f(k)=2k-2,f(k+5)=k+3∴k+3=2(2k-2)-5,解得k=4(8分)
综上,存在k=4使f(k+5)=2f(k)-5成立.(9分)
(Ⅲ)证明:|
p1pn
|2=(n-1)2+4(n-1)2=5(n-1)2

(1)当n=2时
1
|p1p2|2
+
1
|p2p3|2
+…+
1
|p1pn|2
=
1
5
2
5
成立.(11分)
(2)当n≥3,n∈N*时,
1
|p1p2|2
+
1
|p1p3|2
+…+
1
|p1pn|2
=
1
5
[
1
12
+
1
22
+…+
1
(n-1)2
]
λx12-2λx1+λ-1=0.(12分)
=
1
5
(1+1-
1
n-1
)<
1
5
(1+1)=
2
5
成立.(13分)
综上,当n≥2,n∈N*时,
1
|p1p2|2
+
1
|p1p3|2
+…+
1
|p1pn|2
2
5
成立.(14分)
点评:本题考查数列的性质及其综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中{an}、{bn}分别为等差数列和等比数列,P1是线段AB的中点,对于给定的公差不为零的an,都能找到唯一的一个bn,使得P1,P2,P3,…,Pn,…,都在一个指数函数
 
(写出函数的解析式)的图象上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),点列Pn(an,bn)(n∈N+)在L中,p1为L与y轴的交点,数列{an}是公差为1的等差数列.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若f(n)=
an,(n为奇数)
bn,(n为偶数)
,令Sn=f(1)+f(2)+f(3)+…+f(n),试写出Sn关于n的表达式;
(Ⅲ)若f(n)=
an,(n为奇数)
bn,(n为偶数)
,给定奇数m(m为常数,m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N*
(I)求数列{bn}的通项公式;
(Ⅱ)若f(n)=
an  n为正奇数
bn  n为正偶数
,令Sn=f(1)+f(2)+f(3)+…+f(n);试写出Sn关于n的函数解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知点列Pn(an,bn)∈L,P1为L与y轴的交点.等差数列{an}的公差为1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)对于数列{bn},设Sn是其前n项和,是否存在一个与n无关的常数M,使
Sn
S2n
=M
,若存在,求出此常数M,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N+
(1)求数列{an},{bn}的通项公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,请说明理由.
(3)求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

同步练习册答案