精英家教网 > 高中数学 > 题目详情
20.数列$-\frac{1}{3}$,$\frac{1}{9}$,-$\frac{1}{27}$,$\frac{1}{81}$,…的一个通项公式可能是(  )
A.(-1)n-1$\frac{1}{{3}^{n}}$B.(-1)n-1$\frac{1}{3n}$C.(-1)n$\frac{1}{{3}^{n}}$D.(-1)n$\frac{1}{3n}$

分析 根据数列的特点求出数列的通项公式即可.

解答 解:∵数列$-\frac{1}{3}$,$\frac{1}{9}$,-$\frac{1}{27}$,$\frac{1}{81}$,…,
满足奇数项为负值,偶数项为正值,
分母分别是31,32,33,34,…,
故数列的一个通项公式可能是(-1)n$\frac{1}{{3}^{n}}$,
故选:C.

点评 本题考查了求数列的通项公式,考查规律问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线和两个相交平面都平行,则这两条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每一课程都是等可能的.
(1)求甲、乙、丙三人选择的课程互不相同的概率;
(2)设X为甲、乙、丙三人中选修《数学史》的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知以A(-1,2)点为圆心的圆与直线${l_1}:\frac{1}{2}x+y+\frac{7}{2}=0$相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{19}$时,求直线l的方程;
(3)$\overrightarrow{BP}•\overrightarrow{BQ}$是否是定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,点P是正方体ABCD-A1B1C1D1的面对角线BC1(线段BC1)上运动,给出下列五个命题:
①直线AD与直线B1P为异面直线;
②A1P∥平面ACD1
③三棱锥A-D1PC的体积为定值;
④面PDB1⊥面ACD1
⑤直线AP与平面ACD1所成角的大小不变.
其中真命题的编号为①②③④.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{1}{3}$x3-mx2+x+2有两个极值点,则m的取值范围是(  )
A.(-1,1)B.[-1,1]C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为(  )
A.B.$\frac{25}{2}$πC.12πD.$\frac{41}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-x|x-a|-3a,a>0.
(1)若a=1,求f(x)的单调区间;
(2)求函数在x∈[0,3]上的最值;
(3)当a∈(0,3)时,若函数f(x)恰有两个不同的零点x1,x2,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{bn}是首项为-34,公差为1的等差数列,数列{an}满足an+1-an=2n(n∈N*),且a1=b37,则数列{$\frac{{b}_{n}}{{a}_{n}}$}的最大值为$\frac{1}{{2}^{36}}$.

查看答案和解析>>

同步练习册答案