精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的左右焦点分别为,已知其离心率为,且过点.

1)求椭圆的标准方程.

2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点,探究是否为定值?如果为定值,请求出该定值;如果不为定值,请说明理由.

【答案】1;(2,理由见解析.

【解析】

1)根据离心率为,且过点,结合性质 ,列出关于 的方程组,求出 ,即可得结果;(2)利用椭圆定义可得,设直线的方程分别为,求得 ,代入化简即可得结果.

1)由题可知:可得

,所该椭圆的方程为

2)如图,

由(1)问可知,又因为

所以,即

所以,于是

由点在椭圆上,可知

可得.同理

所以

设直线的方程分别为

所以

同理得

可得

,即为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线:,抛物线图象上的一动点到直线与到轴距离之和的最小值为__________到直线距离的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B,C,D是直角坐标系中不同的四点,若,且,则下列说法正确的是( ),

A.C可能是线段AB的中点

B.D可能是线段AB的中点

C.CD可能同时在线段AB

D.CD不可能同时在线段AB的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东方商店欲购进某种食品(保质期一天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价元,售价元,如果一天内无法售出,则食品过期作废,现统计该产品天的销售量如下表:

(1)根据该产品天的销售量统计表,求平均每天销售多少份?

(2)视样本频率为概率,以一天内该产品所获得的利润的平均值为决策依据,东方商店一次性购进份,哪一种得到的利润更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数,按照以下的规律进行变换,如果是奇数,则下一步变成;如果是偶数,则下一步变成,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,下列程序框图就是根据这个游戏而设计的,如果输出的的值为6,则输入的值可以为( )

A. 5或16B. 16C. 5或32D. 4或5或32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的准线与轴交于点,过点作直线交抛物线于两点.

1)求直线的斜率的取值范围;

2)若线段的垂直平分线交轴于,求证:

3)若直线的斜率依次为,线段的垂直平分线与轴的交点依次为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=BC=AC=2,则此三棱锥外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其中,,数列{bn}满足b1=2bn+1=2bn

1)求数列的通项公式;

2)是否存在自然数,使得对于任意,有恒成立?若存在,求出的最小值;

3)若数列满足,求数列的前项和

查看答案和解析>>

同步练习册答案