精英家教网 > 高中数学 > 题目详情
已知
sinα+3cosα
3cosα-sinα
=5
,则tan2α=
 
考点:二倍角的正切
专题:计算题,三角函数的求值
分析:利用
sinα+3cosα
3cosα-sinα
=5
,求出tanα=2,再利用二倍角的正切公式计算tan2α.
解答: 解:∵
sinα+3cosα
3cosα-sinα
=5

tanα+3
3-tanα
=5,
∴tanα=2,
∴tan2α=
2tanα
1-tan2α
=-
4
3

故答案为:-
4
3
点评:本题考查同角三角函数关系,考查二倍角的正切公式,正确运用公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(π+α)=-
3
5
,且α是第四象限角,则sin(-2π-α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:|-0.01 |
1
2
-(-
5
8
)0+eln2+(lg2)2
+lg2lg5+lg5;
(2)已知2lg[
1
2
(m-n)]=lgm+lgn
,求
m
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=cos2x+cosx,则其最小值为(  )
A、-2
B、-
9
8
C、2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a,b∈R).
(1)当x∈[-1,1]时,求f(x)的最大值为M;
(2)若对于任意的实数x,都有f(x)≥2x+a,求b的取值范围;
(3)若对于x∈[1,3],f(x)>-5+b恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
3
7
,sin(α-β)=
3
3
14
,且0<β<α<
π
2

(Ⅰ)求tan2α的值;
(Ⅱ)求角β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A={x|x2-2x-3<0},B={x|x2-4>0},C={x|x2+2mx-3m2<0}.
(1)若(A∩B)⊆C,求实数m的取值范围;
(2)若C⊆(A∩B),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x+1(e是自然对数的底数),若f(a)=2,则f(-a)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a1=-3,ak+1=
3
2
,Sk=-12,则正整数k=(  )
A、10B、11C、12D、13

查看答案和解析>>

同步练习册答案