精英家教网 > 高中数学 > 题目详情
8.不等式${(\frac{1}{2})^{x-{x^2}}}$<log381的解集为(-1,2).

分析 根据指数不等式和对数的运算法则进行求解即可.

解答 解:∵${(\frac{1}{2})^{x-{x^2}}}$<log381,
∴${(\frac{1}{2})^{x-{x^2}}}$<4,
即${2}^{{x}^{2}-x}<{2}^{2}$,
∴x2-x<2,
即x2-x-2<0,
解得-1<x<2,
即不等式的解集为(-1,2);
故答案为:(-1,2).

点评 本题主要考查不等式的求解,根据指数函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.等比数列{an}的前4项和为4,前12项和为28,则它的前8项和是(  )
A.-8B.12C.-8或12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$则f(f($\frac{1}{8}$))=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a2=3,a3+a6=11.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=2({a_n}+\frac{1}{{{2^{a_n}}}})$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直角三角形的两直角边长分别为2和4,求两直角边上的中线所夹的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.满足{1,2}⊆A⊆{1,2,3,4},则满足条件的集合A的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线1在直角坐标系xOy中的参数方程为$\left\{\begin{array}{l}x=2+tcoaα\\ y=1+tsinα\end{array}\right.$(t为参数,α为倾斜角),曲线C的极坐标方程为ρ=2cosθ(其中坐标原点O为极点,x轴非负半轴为极轴.取相同单位长度).
(1)写出曲线C的直角坐标方程;
(2)若曲线C与直线l相交于不同的两点M,N,设P(2,1),求|PM|+|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:x+y-3=0,l2:x-y十1=0,且A为两直线的交点.
(1)求点A的坐标;
(2)求过点A且斜率为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=tan(2x-$\frac{π}{4}$)+1,x∈[0,π],使f(x)为正值的x的集合为[0,$\frac{3π}{8}$)、或($\frac{π}{2}$,$\frac{7π}{8}$).

查看答案和解析>>

同步练习册答案