精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( ﹣2.
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面积S.

【答案】解:(Ⅰ) = (2分)
= = =
因为ω=2,所以
(Ⅱ)
因为 ,所以
则a2=b2+c2﹣2bccosA,所以 ,即b2﹣4b+4=0
则b=2(10分)
从而
【解析】(Ⅰ)利用向量数量积的坐标表示可得,结合辅助角公式可得f(x)=sin(2x﹣ ),利用周期公式 可求;(Ⅱ)由 结合 可得 ,由余弦定理可得,a2=b2+c2﹣2bccosA,从而有 ,即b2﹣4b+4=0,解方程可得b,代入三角形面积公式可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,证明:为偶函数

)若上单调递增,求实数的取值范围

)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1 , x2 , 求证;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足不等式组 ,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为(
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足: ,且它的前n项和Sn有最大值,则当Sn取到最小正值时,n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.

(1)若抽奖规则是从一个装有个红球和 个白球的袋中一次取出个球,当两个球同色时则中奖,求中奖概率;

(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

部分图像如图所示.

(Ⅰ)求函数的解析式及图像的对称轴方程;

(Ⅱ)把函数图像上点的横坐标扩大到原来的倍(纵坐标不变),再向左平移

个单位,得到函数的图象,求关于的方程

时所有的实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1的极坐标方程ρ2cos2θ=8,曲线C2的极坐标方程为θ= ,曲线C1 , C2相交于A,B两点.以极点O为原点,极轴所在直线为x轴建立平面直角坐标系,已知直线l的参数方程为 (t为参数).
(1)求A,B两点的极坐标;
(2)曲线C1与直线l分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

同步练习册答案