【题目】某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是
A. 413.7元 B. 513.7元 C. 546.6元 D. 548.7元
科目:高中数学 来源: 题型:
【题目】已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.
(Ⅰ)求直线PQ与圆C的方程;
(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①与和的乘积成正比;②当时, ,并且技术改造投入比率, 为常数且.
(1)求的解析式及其定义域;
(2)求的最大值及相应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是
①函数f(x)的最大值为1; ②函数f(x)的最小值为0;
③方程有无数个根; ④函数f(x)是增函数.
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的一条准线方程为x=,离心率为.
(1)求椭圆C的方程;
(2)如图,设A为椭圆的上顶点,过点A作两条直线AM,AN,分别与椭圆C相交于M,N两点,且直线MN垂直于x轴.
① 设直线AM,AN的斜率分别是k1, k2,求k1k2的值;
② 过M作直线l1⊥AM,过N作直线l2⊥AN,l1与l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为(-3,3),
满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为( )
A.an=( )n﹣1
B.an=( )n
C.an=
D.an=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水 (单位:千克)清洗该蔬菜千克后,蔬菜上残留的农药 (单位:微克)的统计表:
在坐标系中描出散点图,并判断变量与的相关性;
(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值和,完成以下表格(填在答题卡中),求出与的回归方程.(精确到0.1)
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)(附:线性回归方程计算公式: , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com