精英家教网 > 高中数学 > 题目详情

【题目】已知直线为参数)和圆的极坐标方程:

1)分别求直线和圆的普通方程并判断直线与圆的位置关系;

2)已知点,若直线与圆相交于两点,求的值.

【答案】(1)直线,圆,直线和圆相交(2)

【解析】

1)消去直线参数方程中参数,可得直线的普通方程,把两边同时乘以,结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,再由圆心到直线的距离与圆的半径的关系判断直线和圆的位置关系;

2)把直线的参数方程代入曲线的直角坐标方程,化为关于的一元二次方程,利用参数的几何意义及根与系数的关系,求的值.

解:(1)由为参数),消去参数

,因

则圆的普通方程为

则圆心到直线的距离,故直线和圆相交.

2)设

将直线的参数方程代入

因直线点,且点在圆内,

则由的几何意义知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年4月的西安奔驰女车主哭诉维权事件引起了社会的广泛关注,某汽车4S店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[02),第二组[24),第三组[46),第四组[68),第五组[810],得到频率分布直方图如图所示.已知第二组的频数为10

1)求图中实数ab的值;

2)求所打分值在[610]的客户人数;

3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy直线l的参数方程为t为参数)以原点O为极点x轴正半轴为极轴建立极坐标系曲线C的极坐标方程为若直线l与曲线C相交于AB两点AOB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数解,求实数的取值范围;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有6个座位连成一排现有3人就坐,则恰有两个空位相邻的概率为( )

A. B. C. D. 以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.

1)求比赛进行3个回合后,甲与乙的比分为的概率;

2表示3个回合后乙的得分,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是实数,函数.

1)若,求的值及曲线在点处的切线方程;

2)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:对任意都有.

1)求证:函数是奇函数;

2)如果当时,有,试判断上的单调性,并用定义证明你的判断;

(3)在(2)的条件下,若对满足不等式的任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数同时满足下列两个条件,则称该函数为和谐函数”:

1)任意恒成立;

2)任意,都有

以下四个函数:;②;③;④中是“和谐函数”的为________________(写出所有正确的题号).

查看答案和解析>>

同步练习册答案