精英家教网 > 高中数学 > 题目详情
如图,△ABC中,∠C=90°,AC=BC=2
2
,一个边长2的正方形由位置Ⅰ沿AB边平行移动到位置Ⅱ,若移动的距离为x,正方形和三角形的公共部分的面积为f(x).
(1)求f(x)的解析式;(2)在坐标系中画出函数y=f(x)的草图;
(3)根据图象,指出函数y=f(x)的最大值和单调区间.
分析:(1)将一个边长为2的正方形由位置Ⅰ沿AB平行移动到位置Ⅱ停止,若移动的距离为x,此时正方形和△ABC的公共部分分为三种情况,然后分别求出公共部分的面积为f(x);
(2)根据分段函数的作图方法进行作图;
(3)根据函数图象可得函数的最大值和函数的单调区间.
解答:解:(1)当x∈[0,2]时,正方形和△ABC的公共部分是等腰直角三角形
∴f(x)=
1
2
x2

当x∈(2,4]时,正方形和△ABC的公共部分是两个直角梯形
f(x)=4-
1
2
(x-2)2-
1
2
(4-x)2

当x∈(4,6]时,正方形和△ABC的公共部分是等腰直角三角形
f(x)=
1
2
[2-(x-4)  2

综上所述:f(x)=
1
2
x2
4-
1
2
(x-2)2-
1
2
(4-x)2
1
2
[2-(x-4)]2
x∈[0,2]
x∈(2,4]
x∈(4,6]

f(x)=
1
2
x2,(0≤x≤2)
-x2+6x-6,(2<x<4)
1
2
(x-6)2,(4≤x≤6)

(2)分段画出图象

(3)根据图象可知当x=3时,函数值最大为3;
单调增区间为[0,3],单调减区间为[3,6].
点评:本题主要考查了函数模型的选择与应用,以及分段函数的最值及其几何意义和函数图象的作法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,BC=2
3
AB
AC
=4,
AC
CB
=2
,双曲线M是以B、C为焦点且过A点.
(Ⅰ)建立适当的坐标系,求双曲线M的方程;
(Ⅱ)设过点E(1,0)的直线l分别与双曲线M的左、右支交于
F、G两点,直线l的斜率为k,求k的取值范围.;
(Ⅲ)对于(Ⅱ)中的直线l,是否存在k≠0使|OF|=|OG|若有求出k的值,若没有说明理由.(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
AP
=m
AB
+
2
11
AC
,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,
求证:PB2=PE•PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,△ABC中,∠B=60°,AD,CE是角平分线.
求证:AE+CD=AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,点D在BC边上,且AC=2,BC=2.5,AD=1,BD=0.5,则AB的长为
 
精英家教网

查看答案和解析>>

同步练习册答案