精英家教网 > 高中数学 > 题目详情

【题目】过点P(3,﹣4)作圆(x1)2+y22的切线,切点分别为AB,则直线AB的方程为(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

【答案】C

【解析】

画出图象,以P为圆心,以PB长度为半径可得到圆P,则圆(x1)2+y22与圆P的公共弦所在直线即为直线AB,利用两点间的距离公式和勾股定理可求出圆P的方程,然后两个方程相减即可得到直线AB的方程.

如图,圆P为以P为圆心,以PB长度为半径的圆,则圆(x1)2+y22与圆P的公共弦所在直线即为直线AB

中,,则

所以圆P的方程为:,又圆C的方程为:(x1)2+y22

以上两个等式相减可得,,化简得,.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是离心率为的椭圆 两焦点,若存在直线,使得关于的对称点的连线恰好是圆 的一条直径.

(1)求椭圆的方程;

(2)过椭圆的上顶点作斜率为的两条直线,两直线分别与椭圆交于两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线轴的交点为,与抛物线的交点为,且

1)求抛物线的方程;

2)过抛物线上一点作两条互相垂直的弦,试问直线是否过定点,若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若曲线在点(处的切线与曲线在点处的切线互相垂直,求函数在区间上的最大值;

2)设函数,试讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.

一次购物量

13

47

811

1215

16件及以上

顾客数(人)

27

20

10

结算时间(/人)

0.5

1

1.5

2

2.5

1)确定的值,并求顾客一次购物的结算时间的平均值;

2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的值域;

2)是否存在实数,对任意给定的,在存在两个不同的使得,若存在,求出的范围,若不存在,说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.

(1)求抛物线的标准方程;

(2)若在轴上存在点,过点的直线分别与抛物线相交于两点,且为定值,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面.

(1)求证:平面平面

(2)若与平面所成的线面角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案