【题目】如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
科目:高中数学 来源: 题型:
【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
合计 |
(1)求、、的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为li(i=2,3,4),l1=AE,将线段l1 , l2 , l3 , l4竖直放置在同一水平线上,则大致的图形是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足且,则称函数为“函数”.
试判断是否为“函数”,并说明理由;
函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;
在条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为、的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.
(1)求包装盒的容积关于的函数表达式,并求函数的定义域;
(2)当为多少时,包装盒的容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.
(1)求 的值;
(2)若sin A=,求sin(C-) 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求该函数的定义域;
(2)当时,如果对任何都成立,求实数的取值范围;
(3)若,将函数的图像沿轴方向平移,得到一个偶函数的图像,设函数的最大值为,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com