精英家教网 > 高中数学 > 题目详情

【题目】已知两定点 和一动点,给出下列结论:

①若,则点的轨迹是椭圆;

②若,则点的轨迹是双曲线;

③若,则点的轨迹是圆;

④若,则点的轨迹关于原点对称;

⑤若直线斜率之积等于,则点的轨迹是椭圆(除长轴两端点).

其中正确的是__________(填序号).

【答案】③④

【解析】对于①,由于,所以点的轨迹是线段,①不正确;

对于②,由于,故点的轨迹是双曲线的右支,②不正确;

对于③,设,由题意得

整理得

∴点的轨迹是圆,③正确。

对于④,设

又点关于原点的对称点为

∴点也在曲线上,

即点的轨迹关于原点对称。故④正确。

对于⑤,设,则

由题意得

整理得。此方程不一定表示椭圆。⑤不正确。

综上,正确的结论是③④。

答案:③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数定义域为,如果存在非实数对任意的都有,则称函数是“似周期函数”,非零常数为函数的似周期.现有下列四个关于“似周期函数”的命题:

①如果“似周期函数”的“似周期”为,那么它是周期为的周期函数;

②函数是“似周期函数”;

③函数是“似周期函数”;

④如果函数是“似周期函数”.那么”

其中是真命题的序号是____.(请填写所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求直线laxyb0经过两直线l12x2y30l23x5y10交点的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)求证:AC1∥平面B1CD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的t=0.01,则输出的n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为,定点 为圆上一点,线段上一点满足,直线上一点,满足

(Ⅰ)求点的轨迹的方程;

(Ⅱ)为坐标原点, 是以为直径的圆,直线相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )

①若是“等方差数列”,在数列 是等差数列;

是“等方差数列”;

③若是“等方差数列”,则数列为常)也是“等方差数列”;

④若既是“等方差数列”又是等差数列,则该数列是常数数列.

其中正确命题的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,分别求抛物线的标准方程:

(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;

(2)抛物线的焦点Fx轴上,直线y=-3与抛物线交于点AAF=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a (a>0,且a≠1),x∈[0, ]的最大值比最小值大2a,则a=

查看答案和解析>>

同步练习册答案