精英家教网 > 高中数学 > 题目详情
如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为
p
2
,A、B为直线a上的两个定点,且AB=2p,MN是在直线b上滑动的长度为2p的线段.
(1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;
(2)当△AMN的外心C在E上什么位置时,使d+BC最小?最小值是多少?(其中,d为外心C到直线c的距离)
以直线b为 x轴,以过点A且与b直线垂直的直线为y轴,建立直角坐标系,
由题意A(0,p),设△AMN的外心C(x,y),则M(x-p,0)N(x+p,0),
由题意有|CA|=|CM|.∴
x2+(y-p)2
=
(x-x+p)2+y2

解得x2=2py,它是以原点为顶点、y轴为对称轴、开口向上的抛物线.
(2)不难得到,直线c是轨迹E的准线,由抛物线的定义可知,d=|CF|,
其中F(0.
p
2
),是抛物线的焦点,
所以d+|BC|=|CF|+|BC|,
由两点距离可知直线段最短,
线段BF与轨迹E的交点就为所求的使d+|BC|最小点,
由两点式方程可求直线BF的方程为:y=
1
4
x+
1
2
p,与x2=2py联立,
得C(
1
4
p(1+
17
),
9+
17
16
p
).
故当△AMN的外心C在E上
C(
1
4
p(1+
17
),
9+
17
16
p
)时,d+|BC|最小,
最小值|BF|=
17
2
p
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若圆C1x2+y2=1和圆C2:(x+4)2+(y-a)2=25外切,则a的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程(x-y)2+(xy-1)2=0表示的曲线是(  )
A.两条直线B.一条直线和一双曲线
C.两个点D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点F(
1
4
,0)
,直线l:x=-
1
4
,点B是l上的动点.若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是(  )
A.双曲线B.椭圆C.圆D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一动点在圆x2+y2=1上移动时,它与定点B(2,3)连线的中点轨迹是(  )
A.(2x-2)2+(2y-3)2=1B.(4-x)2+(6-y)2=1
C.(x+2)2+(y+3)2=1D.(x+2)2+(y+3)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(I)求动点P的轨迹C的方程;
(II)试根据λ的取值情况讨论轨迹C的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0.
(1)当且仅当m在什么范围内,该方程表示一个圆;
(2)当m在以上范围内变化时,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)的距离之和等于4,设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A,B两点.k为何值时以AB为直径的圆经过原点O?此时|AB|的值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是(  )
A.椭圆B.直线C.线段D.圆

查看答案和解析>>

同步练习册答案