精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

【答案】(1) (2) 30°90°

【解析】

1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;

解法二:求出线段的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;

2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为

二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值。结合前面两种情况求出直线的倾斜角。

1)解法一:设圆的方程为

即圆

∴圆的标准方程为

解法二:则中垂线为,中垂线为

∴圆心满足

半径

∴圆的标准方程为

2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,

此时直线的倾斜角为90°

②当斜率存在时,设直线的方程为

由弦长为4,可得圆心 到直线的距离为

,此时直线的倾斜角为30°

综上所述,直线的倾斜角为30°90°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,下列命题正确的有_______.(写出所有正确命题的编号)

是奇函数;

上是单调递增函数;

③方程有且仅有1个实数根;

④如果对任意,都有,那么的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;

(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, .

(Ⅰ)证明:

(Ⅱ)平面 平面 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①命题“若,则”的逆否命题为假命题:

②命题“若,则”的否命题是“若,则”;

③若“”为真命题,“”为假命题,则为真命题,为假命题;

④函数有极值的充要条件是 .

其中正确的个数有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)当a=3时,求关于x的不等式f(x)≤6的解集;
(II)当x∈R时,f(x)≥a2﹣a﹣13,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为1(单位:)的正方体木块经过适当切割,得到几何体,已知几何体由两个底面相同的正四棱锥组成,底面平行于正方体的下底面,且各顶点均在正方体的面上,则几何体体积的取值范围是________(单位:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点处的所有不同走法共有( )

A. 22种 B. 24种 C. 25种 D. 27种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为,且两个焦点和短轴的两个端点恰为一个正方形的顶点.

(1)求椭圆的方程;

(2)设过右焦点轴不垂直的直线与椭圆交于两点.在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,

请说明理由;

(3)设点在椭圆上运动,,且点到直线的距离等于,试求动点的轨

迹方程.

查看答案和解析>>

同步练习册答案