精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)若,求的极值;
(Ⅱ)若在定义域内无极值,求实数的取值范围.
(Ⅰ) ;(Ⅱ) .

试题分析:(Ⅰ)先写出时的函数解析式以及定义域:,对函数求导并且求得函数的零点,结合导数的正负判断函数在零点所分的各个区间上的单调性,从而得到函数的极值点,求得极值点对应的函数值即可;(Ⅱ)先求出函数的导数,将问题“在定义域内无极值”转化为“在定义域上恒成立”,那么设分两种情况进行讨论,分别为方程无解时,以及方程有解时保证,即成立,解不等式及不等式组,求两种情况下解的并集.
试题解析:(Ⅰ)已知,∴,     1分
 ,            2分
,解得.             3分
时,
时,.                    4分
,                    5分
取得极小值2,极大值.        6分
(Ⅱ)
,      7分
在定义域内无极值,即在定义域上恒成立.     9分
,根据图象可得:
,解得.           11分
∴实数的取值范围为.              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)判断函数上的单调性,并用定义加以证明;
(Ⅱ)若对任意,总存在,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)如果,求函数的单调递减区间;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的两个极值点,其中
(1)求的取值范围;
(2)若,求的最大值.注:e是自然对数的底.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 求的单调区间;
(Ⅱ) 求所有的实数,使得不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设点为函数的图象上任意一点,若曲线在点处的切线的斜率恒大于
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,记的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l是曲线的倾斜角最小的切线,则l的方程为____________.

查看答案和解析>>

同步练习册答案