精英家教网 > 高中数学 > 题目详情
10.已知f(x)是定义在[-2,2]上的偶函数,当x∈[0,2]时,f(x)=x2+4x+1
(1)用定义证明f(x)在区间[0,2]上是单调递增函数;
(2)解不等式f(x)>f(1-x).

分析 (1)利用函数单调性的定义进行证明即可.
(2)根据函数奇偶性和单调性的关系将不等式进行转化进行求解即可.

解答 (1)证明:在区间[0,2]上任取x1,x2且x1<x2
f(x1)-f(x2)=x12+4x1+1-(x22+4x2+1)=(x1-x2)(x1+x2+4),
∵0≤x1<x2≤2,
∴x1-x2<0,x1+x2+4>0,
∴f(x1)-f(x2)<0,
即∴f(x1)<f(x2),
∴f(x)在[0,2]上是增函数.(4分)
(2)由已知:f(|x|)>f(|1-x|),
∴$\left\{{\begin{array}{l}{-2≤x≤2}\\{-2≤1-x≤2}\\{|x|>|1-x|}\end{array}}\right.$
解得$\frac{1}{2}<x≤2$
∴不等式的解集为$({\frac{1}{2},2}]$(8分)

点评 本题主要考查函数单调性的判断,以及不等式的求解,利用定义法结合函数单调性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x<-1或x>2},B={1,4a,a2},C={x|a<x<a+4}.
(1)若4∈B,求A∩B;
(2)若∁RC⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角分别为A,B,C.向量$\overrightarrow{m}$=(1,cos$\frac{C}{2}$)与$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{C}{2}$+cos$\frac{C}{2}$,$\frac{3}{2}$)共线.
(Ⅰ)求角A,B,C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acossC+c=2b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.角α的终边经过点P(-1,$\sqrt{3}$),则sin($\frac{π}{2}$+α)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$且P,A,B,C四点共面(该面不过点O),则S2014=(  )
A.503B.$\frac{1007}{2}$C.1006D.1007

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=-x2+2bx+c,任意的x1,x2∈(-∞,0)且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_2}-{x_1}}}$<0,则实数b的取值范围为b≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆锥的侧面积为15πcm2,底面半径为3cm,则圆锥的高是(  )
A.3cmB.4cmC.5cmD.8cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正方形ABCD所在平面与正方形ABB1A1所在的平面垂直,且AB等于1.设E、F分别为AB、BC上的动点,(不包括端点)
(1)若BE=BF.求证:平面BDB1⊥平面B1EF.
(2)设AE=BF=x,求异面直线A1E与B1F所成的角取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么到2020年底,我国的人口数最多为多少亿?(  )
A.13+20×13×1%B.13+21×13×1%C.13×(1+1%)20D.13×(1+1%)21

查看答案和解析>>

同步练习册答案