精英家教网 > 高中数学 > 题目详情

【题目】一次数学竞赛,共有6道选择题,规定每道题答对得5分,不答得1分,答错倒扣1分.一个由若干名学生组成的学习小组参加了这次竞赛,这个小组的人数与总得分情况为(  )

A. 当小组的总得分为偶数时,则小组人数一定为奇数

B. 当小组的总得分为奇数时,则小组人数一定为偶数

C. 小组的总得分一定为偶数,与小组人数无关

D. 小组的总得分一定为奇数,与小组人数无关

【答案】C

【解析】

先假设一名同学全答对,得出得分的奇偶,然后再根据不答或答错得分的奇偶性进行分析即可。

每个人得的总分是6×5=30,

在满分的基础上,若1题不答,则总分少4分,若1题答错,则总分少6分,即在满分的基础上若题不答,则总分少分,若题答错,则总分少分,则每个人的得分一定是偶数,则小组的总得分也是偶函数,与小组人数无关,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过点且斜率为1的直线与抛物线交于 两点,且.

(1)求抛物线的方程;

(2)若平行于的直线与抛物线相切于点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)集合,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;

2)在等差数列和等比数列中,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;

3)已知当时,有,根据此信息,若对任意,都有,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),直线经过点,且倾斜角为

(1)写出直线的参数方程和圆的标准方程;

(2)设直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,设分别为椭圆的右顶点,下顶点,的面积为1.

(1)求椭圆的方程;

(2)已知不经过点的直线交椭圆于两点,线段的中点为,若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,右焦点为,设MN是椭圆C上位于x轴上方的两动点,且直线与直线平行,交于点D

(Ⅰ)求的坐标;

(Ⅱ)求的最小值;

(Ⅲ)求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,椭圆过点.

(1)求椭圆的方程;

(2)过点的直线(不过坐标原点)与椭圆交于两点,且点轴上方轴下方,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,直线是抛物线)和圆C的公切线,切点(在第一象限)分别为PQ.F为抛物线的焦点,切线交抛物线的准线于A,且.

1)求切线的方程;

2)求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案