【题目】已知直线m、n与平面α、β,下列命题正确的是( )
A.m⊥α,n∥β且α⊥β,则m⊥n
B.m⊥α,n⊥β且α⊥β,则m⊥n
C.α∩β=m,n⊥m且α⊥β,则n⊥α
D.m∥α,n∥β且α∥β,则m∥n
【答案】B
【解析】解:对于A,m⊥α,n∥β且α⊥β,则m∥n,故不正确;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题正确;
对于C,若α⊥β,α∩β=m,nβ,n⊥m,利用面面垂直的性质定理即可得出:n⊥α,因此不正确;
对于D,在正方体ABCD﹣A1B1C1D1中,
平面ABCD∥平面A1B1C1D1 ,
A1D1∥平面ABCD,AD∥平面A1B1C1D1 , A1D1∥AD;
EP∥平面ABCD,PQ∥平面A1B1C1D1 , EP∩PQ=P;
A1D1∥平面ABCD,PQ∥平面A1B1C1D1 , A1D1与PQ异面.
综上,直线m,n与平面α,β,m∥α,n∥β且α∥β,
则直线m,n的位置关系为平行或相交或异面.
故选:B.
【考点精析】关于本题考查的空间中直线与平面之间的位置关系,需要了解直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为(为参数, ),直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)为曲线上任意一点, 为直线任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列命题的否定,并判断其真假:
(1)p:末位数字为9的整数能被3整除;
(2)p:有的素数是偶数;
(3)p:至少有一个实数x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,Sn为数列{an}的前n项和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)若an<an+1 , 求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:
求分数在的频率及全班人数;
求分数在之间的频数,并计算频率分布直方图中间矩形的高;
若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为C的圆:(x﹣a)2+(y﹣b)2=8(a,b为正整数)过点A(0,1),且与直线y﹣3﹣2 =0相切.
(1)求圆C的方程;
(2)若过点M(4,﹣1)的直线l与圆C相交于E,F两点,且 =0.求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形和菱形所在平面互相垂直,如图,其中, , ,点为线段的中点.
(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com