精英家教网 > 高中数学 > 题目详情
6.已知正方体ABCD-A1B1C1D1中,点H是棱B1C1中点,则四边形BDD1H是(  )
A.平行四边形B.矩形C.空间四边形D.菱形

分析 正方体ABCD-A1B1C1D1中,点H是棱B1C1中点,可得H不在平面BDD1内,即可得出结论.

解答 解:∵正方体ABCD-A1B1C1D1中,点H是棱B1C1中点,
∴H不在平面BDD1内,
∴四边形BDD1H是空间四边形,
故选C.

点评 本题考查棱柱的结构特征,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,D是AB的中点.
(1)求证:BC1∥平面A1CD;
(2)若AC=CD,求证A1D⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A,B两点的切线交于P,Q.求证:AB2=4AP•BQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在各项为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(1)求数列{an}的通项公式;
(2)设Sn为{an}的前n项和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC中点,作EF⊥PB,交PB于点F.
(1)求证:PA∥平面EDB;
(2)求证:平面EFD⊥平面PBC
(3)求证:PB⊥平面EFD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图是一个奖杯三视图,试根据奖杯三视图计算它的表面积与体积.(尺寸单位:cm,取$π≈3,\sqrt{34}≈6$,结果精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某次志愿活动,需要从6名同学中选出4人负责A、B、C、D四项工作(每人负责一项),若甲、乙均不能负责D项工作,则不同的选择方案有(  )
A.240种B.144种C.96种D.300种

查看答案和解析>>

同步练习册答案