精英家教网 > 高中数学 > 题目详情
12.设点P(6,m)为双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的点,求点P到双曲线右焦点的距离.

分析 先求出P的坐标,双曲线右焦点,再利用两点间的距离公式,即可求点P到双曲线右焦点的距离.

解答 解:∵点P(6,m)为双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的点,
∴$\frac{36}{9}-\frac{{y}^{2}}{16}$=1,∴y=±4$\sqrt{3}$,
∴P(6,$±4\sqrt{3}$),
∵双曲线右焦点F(5,0),
∴|PF|=$\sqrt{(6-5)^{2}+(±4\sqrt{3})^{2}}$=7.

点评 本题考查求点P到双曲线右焦点的距离,考查双曲线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.f(x)的图象如图,则f(x)的值域为[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正三棱柱ABC-A1B1C1中,若AB1⊥BC1,求证:AB1⊥A1C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a}$=(1,λ,1)与$\overrightarrow{b}$=(2,-1,2)的夹角的余弦值为$\frac{\sqrt{3}}{3}$,则λ的值为-5或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABCD-A′B′C′D′为长方体,底面是边长为a的正方形,高为2a,M,N分别是CD和AD的中点.
(1)判断四边形MNA′C′的形状;
(2)求四边形MNA′C′的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求适合下列条件的双曲线的标准方程及其离心率.
(1)焦点在x轴上,c=6,且过点A(-5,2);
(2)a=12,b=5;
(3)经过两点A(-7,-6$\sqrt{2}$),B($\sqrt{7}$,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),则f(1)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y满足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{y+5}{x}$的取值范围为(  )
A.(-1,$\frac{13}{3}$]B.(-∞,-1)∪[$\frac{13}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{2}{3}$]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系中,与点A(1,1)的距离为1,且与点B(-2,-3)的距离为6的直线条数为1.

查看答案和解析>>

同步练习册答案