精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.

1)求椭圆的方程;

2)若线段长为,求直线的倾斜角;

3)点在线段的垂直平分线上,且,求的值.

【答案】1;(2;(3.

【解析】

1)由椭圆长轴长为短轴长的两倍,连接椭圆的四个顶点得到的菱形的面积为4,列出方程组求出,即可求椭圆的方程;

2)直线的方程代入椭圆方程,利用韦达定理,结合弦长公式,即可求得结论.

3)设直线的方程为,由,得,由此根据两种情况分类讨论经,能求出结果.

解:(1椭圆长轴长为短轴长的两倍,

连结椭圆的四个顶点得到的菱形的面积为4

解得

所以椭圆的方程为

2)由(1)可知点的坐标是

设点的坐标为,直线的斜率为,则直线的方程为

代入椭圆方程,消去并整理,得

,得

从而

所以

,得

整理得,即,解得

所以直线的倾斜角

3)由(1)可知.设点的坐标为,直线的斜率为

则直线的方程为

于是两点的坐标满足方程组

由方程组消去并整理,得

,得,从而

设线段是中点为,则的坐标为

以下分两种情况:

①当时,点的坐标为.线段的垂直平分线为轴,于是

,由,得

②当时,线段的垂直平分线方程为

,解得

整理得,故,解得

综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).

(1)求数列{an}的通项公式;

(2)若数列{bn}满足:,求数列{bn}的通项公式;

(3)令(n∈N*),求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机抽取部分高一学生调查其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是,样本数据分组为

)求直方图中的值;

)从学校全体高一学生中任选名学生,这名学生中自主安排学习时间少于分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab>0)的两个焦点分别为F1F2,离心率为,过F1的直线l与椭C交于MN两点,且MNF2的周长为8.

(1)求椭圆C的方程;

(2)若直线ykxb与椭圆C分别交于AB两点,且OAOB,试问点O到直线AB的距离是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且0,若过 A,Q,F2三点的圆恰好与直线相切,过定点 M(0,2)的直线与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线的斜率,在x轴上是否存在点P(,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由;(Ⅲ)若实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与双曲线相交于两点,为坐标原点.

1)若,求实数的值;

2)是否存在实数,使得两点关于对称?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记123456,则红球上的数字之和小于黑球上的数字之和的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为正方形,平面,四边形与四边形也都为正方形,连接,点的中点,有下述四个结论:

    ②所成角为;    

平面     ④与平面所成角为

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

同步练习册答案