19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉèÇúÏßC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÇúÏßC²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßCµÄ·½³Ì£¬ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèÇúÏßCÉϵĵãΪ£¨$\sqrt{3}cos¦È$£¬sin¦È£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÄÜÇó³öÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊý¦È£¬µÃÇúÏßCµÄ·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£¬
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
¼´$¦Ñ£¨cos¦Ècos\frac{¦Ð}{4}+sin¦Èsin\frac{¦Ð}{4}£©$=2$\sqrt{2}$£¬
ÕûÀí£¬µÃ¦Ñcos¦È+¦Ñsin¦È=4£¬
¡ß¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬
Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®
£¨2£©ÉèÇúÏßCÉϵĵãΪ£¨$\sqrt{3}cos¦È$£¬sin¦È£©£¬
¡àÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀ룺
$d=\frac{{|{\sqrt{3}cos¦È+sin¦È-4}|}}{{\sqrt{2}}}=\frac{{|{2sin£¨¦È+\frac{¦Ð}{3}£©-4}|}}{{\sqrt{2}}}¡Ü3\sqrt{2}$£®
¡àÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ${d_{max}}=3\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÆÕͨ·½³ÌºÍÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÇúÏßÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê¡¢Ö±½Ç×ø±êµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄ꼪ÁÖÊ¡¸ßÒ»ÏÂѧÆÚÆÚÄ©Áª¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁУ¬ÆäÇ°nÏîºÍΪ£¬ÇҳɵȲîÊýÁУ¬ÔòÊýÁеÄͨÏʽΪ£¨ £©

A£® B£® C£® D£®+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{a£¨x-1£©}{{x}^{2}}$£¬a¡Ù0
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©ÈôÖ±Ïßx-y-1=0ÊÇÇúÏßy=f£¨x£©µÄÇÐÏߣ¬ÇóʵÊýaµÄÖµ£»
£¨III£©Éèg£¨x£©=xlnx-x2f£¨x£©£¬Çóg£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵ£®£¨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÏÂÁк¯ÊýµÄÖµÓò£º
£¨1£©y=$\frac{sinx-1}{sinx-2}$£»
£¨2£©y=2sinx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®É躯Êýf£¨x£©=sin2£¨x+$\frac{¦Ð}{4}$£©-cos2£¨x+$\frac{¦Ð}{4}$£©£¨x¡ÊR£©£¬Ôòº¯Êýf£¨x£©ÊÇ£¨¡¡¡¡£©
A£®×îСÕýÖÜÆÚΪ¦ÐµÄÆ溯ÊýB£®×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý
C£®×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$µÄÆ溯ÊýD£®×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$µÄżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¹ýµãA£¨3£¬4£©ÇÒÓëµãB£¨-3£¬2£©µÄ¾àÀë×î¶ÌµÄÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®3x-y-5=0B£®x-3y+9=0C£®3x+y-13=0D£®x+3y-15=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÔÄ£ÐÍy=cekxÈ¥ÄâºÏÒ»×éÊý¾Ýʱ£¬ÎªÁËÇó³ö»Ø¹é·½³Ì£¬Éèz=lny£¬½«Æä±ä»»ºóµÃµ½ÏßÐÔ·½³Ìz=0.3x+4£¬Ôòc£¬kµÄÖµ·Ö±ðÊÇe4ºÍ0.3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈôµãA£¨a£¬b£©£¨ a¡Ùb£©ÔÚ¾ØÕóM=$|\begin{array}{l}{cosx}&{-sinx}\\{sinx}&{cosx}\end{array}|$¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄµãΪB£¨-b£¬a£©£¬
£¨1£©Çó¾ØÕóMµÄÄæ¾ØÕó£»
£¨2£©ÇóÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóN=$|\begin{array}{l}{0}&{\frac{1}{2}}\\{1}&{0}\end{array}|$Ëù¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄеÄÇúÏßC¡äµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶Á³ÌÐò£º

ÔòÔËÐгÌÐòºóÊä³ö½á¹ûÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$S=\frac{100}{101}£¬P=\frac{100}{101}$B£®$S=\frac{99}{100}£¬P=\frac{99}{202}$
C£®$S=\frac{100}{101}£¬P=\frac{99}{202}$D£®$S=\frac{100}{101}£¬P=\frac{99}{100}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸