精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3ax-2x2+lnx,a为常数.
(1)当a=1时,求f(x)的单调区间;
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
分析:(1)先求函数的导函数f′(x),并将其因式分解,便于解不等式,再由f′(x)>0,得函数的单调增区间,由f′(x)<0,得函数的单调减区间
(2)先求函数的导函数f′(x),将函数f(x)在区间[1,2]上为单调函数问题转化为则f′(x)≥0,或f′(x)≤0在区间[1,2]上恒成立问题,进而将不等式参变分离,转化为求函数最值问题即可
解答:解:(1)当a=1时,f(x)=3x-2x2+lnx,则f(x)的定义域是(0,+∞)
f′(x)=3-4x+
1
x
=
-4x2+3x+1
x
=
-(4x+1)(x-1)
x

∴由f′(x)>0,得0<x<1;由f′(x)<0,得x>1;
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
(2)∵f′(x)=3a-4x+
1
x

若函数f(x)在区间[1,2]上为单调函数,
则f′(x)≥0,或f′(x)≤0在区间[1,2]上恒成立.
3a-4x+
1
x
≥0
,或3a-4x+
1
x
≤0
在区间[1,2]上恒成立.
3a≥4x-
1
x
,或3a≤4x-
1
x
在区间[1,2]上恒成立.
设h(x)=4x-
1
x

∵h′(x)=4+
1
x2
>0
∴h(x)=4x-
1
x
在区间[1,2]上是增函数.
h(x)max=h(2)=
15
2
,h(x)min=h(1)=3
∴只需3a≥
15
2
,或3a≤3.
∴a≥
5
2
,或a≤1.
点评:本题考查了利用导数求函数的单调区间的方法,已知函数的单调区间求参数范围的方法,体现了导数在函数单调性中的重要应用;不等式恒成立问题的解法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案