精英家教网 > 高中数学 > 题目详情

【题目】设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2|,∠F1PF2=,则椭圆离心率的取值范围为(  )

A. B. C. D.

【答案】B

【解析】

设焦点F1(-c,0),F2(c,0),运用椭圆的定义和勾股定理,求得e2=,令m=λ+1,可得λ=m-1,即有=,进而求得离心率的取值范围范围.

设F1(-c,0),F2(c,0),由椭圆的定义可得,|PF1|+|PF2|=2a,

可设|PF2|=t,可得|PF1|=λt,

即有(λ+1)t=2a①

由∠F1PF2= ,可得|PF1|2+|PF2|2=4c2

即为(λ2+1)t2=4c2,②

由②÷①2,可得e2=m=λ+1,可得λ=m-1,

即有

≤e2,解得,≤e≤.故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.

(1)求证:直线恒过定点;

(2)当直线被圆截得的弦长最短时,求直线的方程;

(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=6cos2 + sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形.

(1)求ω的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),离心率为 ,左准线方程是x=﹣2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.

(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案