精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{ax}{{x}^{2}+1}$+a,g(x)=aln x-x(a≠0).
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)证明:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f (x2)成立,其中e=2.71828…是自然对数的底数.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)求出f(x)的范围,通过讨论a的范围得到g(x)的单调区间,求出g(x)的最大值,证明结论即可.

解答 解:(Ⅰ)函数f (x)的定义域为R,f′(x)=$\frac{a(1-x2)}{(x2+1)2}$=$\frac{a(1-x)(1+x)}{(x2+1)2}$,
当a>0时,当x变化时,f′(x),f(x)的变化情况如下表:

x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)-0+0-
f (x)
当a<0时,当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f (x)
综上所述,
当a>0时,f (x)的单调递增区间为(-1,1),单调递减区间为(-∞,-1),(1,+∞);
当a<0时,f (x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).
(Ⅱ)由(Ⅰ)可知,当a>0时,f (x)在区间(0,1)上单调递增,f (x)>f (0)=a;
f (x)在区间(1,e]上单调递减,且f (e)=$\frac{ae}{{e}^{2}+1}$+a>a,所以当x∈(0,e]时,f (x)>a,
因为g(x)=aln x-x,所以g′(x)=$\frac{a}{x}$-1,令g′(x)=0,得x=a.
①当a≥e时,g′(x)≥0在区间(0,e]上恒成立,
所以函数g(x)在区间(0,e]上单调递增,所以g(x)max=g(e)=a-e<a.
所以对于任意x1,x2∈(0,e],仍有g(x1)<f(x2).               
②当0<a<e时,由g′(x)>0,得0<x<a;由g′(x)<0,得e≥x>a,
所以函数g(x)在区间(0,a)上单调递增,在区间(a,e]上单调递减.
所以g(x)max=g(a)=aln a-a;
因为a-(aln a-a)=a(2-ln a)>a(2-ln e)=a>0,
所以对任意x1,x2∈(0,e],总有g(x1)<f (x2).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,△AB1C1,△B1B2C2,△B2B3C3是三个边长为2的等边三角形,且有一条边在同一直线上,边B3C3上有5个不同的点P1,P2,P3,P4,P5,设${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),则m1+m2+…+m5=90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克),如表是乙厂的5件产品的测量数据:
编号12345
x169178166175180
y7580777081
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)用辗转相除法求117与182的最大公约数,并用更相减损术检验.
(2)用秦九韶算法求多项式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$f(x)=-\frac{1}{2}{x^2}+bln({2x+4})$在(-2,+∞)上是减函数,则b的范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知焦距为2$\sqrt{3}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1、上顶点为D,直线DF1与椭圆C的另一个交点为H,且|DF1|=7|F1H|.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记数列{an}的前n项和为Sn,若Sn=3an+1,则a10=(  )
A.-$\frac{{3}^{9}}{{2}^{10}}$B.-$\frac{{3}^{10}}{{2}^{10}}$C.$\frac{{3}^{9}}{{2}^{10}}$D.$\frac{{3}^{10}}{{2}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点M(2,-2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB中点的纵坐标为6,则抛物线的方程为(  )
A.x2=2yB.x2=4yC.x2=2y或x2=4yD.x2=3y或x2=2y

查看答案和解析>>

同步练习册答案