精英家教网 > 高中数学 > 题目详情

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面ABCD是平行四边形,,设中点,点在线段上且

(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平行四边形中,为折线,把折起,使平面平面,连接

(1)求证:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

同步练习册答案