精英家教网 > 高中数学 > 题目详情
11.函数f(x)=ae2cosx(x∈[0,+∞),记xn为f(x)的从小到大的第n(n∈N*)个极值点.
(1)证明:数列{f(xn)}是等比数列;
(2)若对一切n∈N*,xn≤|f(xn)|恒成立,求a的取值范围.

分析 (1)求出函数的导数,令导数为0,求得极值点,再由等比数列的定义,即可得证;
(2)由n=1可得a的范围,运用数学归纳法证8n>4n+3,当a≥$\frac{\sqrt{2}}{4}$πe-$\frac{π}{4}$时,验证得|f(xn+1)|>xn+1,即可得到a的范围.

解答 (1)证明:函数f(x)=aexcosx的导数为f′(x)=aex(cosx-sinx),
a>0,x≥0,则ex≥1,
由f′(x)=0,可得cosx=sinx,即tanx=1,解得x=kπ+$\frac{π}{4}$,k=0,1,2,…,
当k为奇数时,f′(x)在kπ+$\frac{π}{4}$附近左负右正,
当k为偶数时,f′(x)在kπ+$\frac{π}{4}$附近左正右负.
故x=kπ+$\frac{π}{4}$,k=0,1,2,…,均为极值点,
xn=(n-1)π+$\frac{π}{4}$=nπ-$\frac{3π}{4}$,
f(xn)=aenπ-$\frac{3π}{4}$cos(nπ-$\frac{5π}{4}$),f(xn+1)=aenπ+$\frac{π}{4}$cos(nπ+$\frac{π}{4}$),
当n为偶数时,f(xn+1)=-eπf(xn),
当n为奇数时,f(xn+1)=-eπf(xn),
即有数列{f(xn)}是等比数列;
(2)解:由于x1≤|f(x1)|,则$\frac{π}{4}$≤$\frac{\sqrt{2}}{2}$ae$\frac{π}{4}$,
解得a≥$\frac{\sqrt{2}}{4}$πe-$\frac{π}{4}$,
下面证明8n>4n+3.
当n=1时,8>7显然成立,假设n=k时,8k>4k+3,
当n=k+1时,8k+1=8•8k>8(4k+3)=32k+24
=4(k+1)+28k+20>4(k+1)+3,
即有n=k+1时,不等式成立.
综上可得8n>4n+3(n∈N+),
由eπ>8,
当a≥$\frac{\sqrt{2}}{4}$πe-$\frac{π}{4}$时,
由(Ⅰ)可得|f(xn+1)|=|(-eπ)|n|f(x1)|
>8n|f(x1)|=8nf(x1)>(4n+3)x1>xn+1,n∈N+,
综上可得a≥$\frac{\sqrt{2}}{4}$πe-$\frac{π}{4}$成立.

点评 本题考查导数的运用:求极值,主要考查不等式的恒成立问题,同时考查等比数列的通项公式和数学归纳法证明不等式的方法,以及不等式的性质,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列推理中属于归纳推理且结论正确的是(  )
A.设数列﹛an﹜的前n项和为sn,由an=2n-1,求出s1=12,s2=22,s3=32,…推断sn=n2
B.由f(x)=xcosx,满足f(-x)=-f(x)对?x∈R都成立,推断f(x)=xcosx为奇函数
C.由圆x2+y2=r2的面积s=πr2推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断对一切正整数n,(n+1)2>2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.由7个字母D,S,S,W,W,Y,H组合成商品代码,且字母Y不在最后一个位置,两个字母W不向邻,则满足条件的不同商品代码个数为780.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(xy)=f(x)f(y),且x≠y时,f(x)≠f(y).
(1)判断f(x)奇偶性;
(2)求证:f(x)是单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,∠C=$\frac{π}{2}$,c=$\sqrt{5}$,则△ABC的面积的最大值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过平面外一点作与该平面垂直的直线有1条,垂直的平面有无数个,平行的直线无数条,平行的平面1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的不等式$\frac{x-1}{x+1}<0$的解集为P,不等式|x-1|≤1的解集Q.
求:(1)P∪Q; 
(2)(∁RP)∩Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A(-1,0),B(5,6),C(3,4),则$\frac{{|{CB}|}}{{|{AC}|}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=4,b=7,sinB=$\frac{1}{4}$,则sinA=(  )
A.$\frac{1}{7}$B.$\frac{7}{16}$C.$\frac{7}{8}$D.$\frac{4}{7}$

查看答案和解析>>

同步练习册答案