精英家教网 > 高中数学 > 题目详情
设Sn是等差数列{an}的前n项和,且S5<S6=S7>S8,则下列结论一定正确的有
(1)(2)(5)
(1)(2)(5)

(1)d<0
(2)a7=0
(3)S9>S5
(4)a1<0
(5)S6和S7均为Sn的最大值.
分析:等差数列{an}中,由S5<S6=S7>S8,可求得d<0,a7=0,a8<0,从而对①②③④⑤可作出正确判断.
解答:解:设等差数列{an}的公差为d,∵S5<S6=S7>S8
∴S6-S5=a6>0,S8-S7=a8<0,
即a6+2d<0,
∴2d<-a6<0,
∴d<0,即(1)正确;
又S6=S7
∴S7-S6=a7=0,即(2)正确;
又S9-S5=a6+a7+a8+a9=2(a7+a8)=2(0+a8)=2a8<0,
∴S9<S5,故(3)错误;
由a6=a1+5d>0,d<0得:a1>-5d>0,故(4)错误;
对于(5),∵等差数列{an}的公差为d<0,首项a1>0,
∴Sn=
d
2
n2+(a1-
d
2
)n为开口向下的抛物线(不连续,一群孤立的点),
又S5<S6=S7>S8
∴S6和S7均为Sn的最大值,即(5)正确.
综上所述,结论一定正确的有(1)(2)(5).
故答案为:(1)(2)(5).
点评:本题考查命题的真假判断与应用,着重考查等差数列的性质,求得得d<0,a7=0是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下四个命题:
①对于任意实数a、b、c,若a>b,c≠0,则ac>bc;
②设Sn 是等差数列{an}的前n项和,若a2+a6+a10为一个确定的常数,则S11也是一个确定的常数;
③关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式
bx-ax+2
>0的解集为(-2,-1);
④对于任意实数a、b、c、d,若a>b>0,c>d则ac>bd.
其中正确命题的是
 
(把正确的答案题号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,S3=3(a2+a8),则
a3
a5
的值为(  )
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,且a4=-4,a9=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则S9=(  )

查看答案和解析>>

同步练习册答案