精英家教网 > 高中数学 > 题目详情

【题目】某公司2005~2010年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:

年份

2005

2006

2007

2008

2009

2010

利润x

12.2

14.6

16

18

20.4

22.3

支出y

0.62

0.74

0.81

0.89

1

1.11

根据统计资料,则(
A.利润中位数是16,x与y有正线性相关关系
B.利润中位数是18,x与y有负线性相关关系
C.利润中位数是17,x与y有正线性相关关系
D.利润中位数是17,x与y有负线性相关关系

【答案】C
【解析】解:由题意,利润中位数是 =17,而且随着利润的增加,支出也在增加,故x与y有正线性相关关系
故选C.
求出利润中位数,而且随着利润的增加,支出也在增加,故可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是(

A.91.5和91.5
B.91.5和92
C.91和91.5
D.92和92

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福州市某大型家电商场为了使每月销售空调和冰箱获得的总利润达到最大,对某月即将出售的空调和冰箱进行了相关调查,得出下表:

资金

每台空调或冰箱所需资金(百元)

月资金最多供应量(百元)

空调

冰箱

进货成本

30

20

300

工人工资

5

10

110

每台利润

6

8

问:该商场如果根据调查得来的数据,应该怎样确定空调和冰箱的月供应量,才能使商场获得的总利润最大?总利润的最大值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义一种运算ab= ,令f(x)=(3x2+6x)(2x+3﹣x2),则函数f(x)的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面坐标系内,O为坐标原点,向量 =(1,7), =(5,1), =(2,1),点M为直线OP上的一个动点.
(1)当 取最小值时,求向量 的坐标;
(2)在点M满足(I)的条件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西南昌十所重点二模】选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,曲线C1的参数方程为t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2

(Ⅰ)求曲线C1C2的直角坐标方程,并分别指出其曲线类型;

(Ⅱ)试判断:曲线C1C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;

(Ⅲ)设是曲线C1上任意一点,请直接写出a + 2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

求b关于a的函数关系式,并写出定义域;

证明:b>3a;

这两个函数的所有极值之和不小于,求a的取值范围。

查看答案和解析>>

同步练习册答案