精英家教网 > 高中数学 > 题目详情
两个相关变量满足如下关系:
x
10
15
20
25
30
y
1003
1005
1010
1011
1014
两变量的回归直线方程为(  )
A.=0.56x+997.4     B. =0.63x-231.2
C. =50.2x+501.4    D. =60.4x+400.7
A

试题分析:
=20,
=1008.6,利用公式可得
≈0.56,
=997.4.
∴回归方程是=0.56x+997.4。
故选A.
点评:中档题,确定回归直线方程,关键是准确计算等相关元素,对计算能力要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

大家知道,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

(1)试估计该学校学生阅读莫言作品超过50篇的概率。
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为对莫言作品的非常了解与性别有关?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
                                                               
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三个数的最大公约数是_________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三点(3,10),(7,20),(11,24)的横坐标x与纵坐标y具有线性关系,求其线性回归方程.
(参考公式:)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校共有学生2000名,各年级男、女生人数如下表.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为           
 
一年级
二年级
三年级
女生
373


男生
377
370

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的
频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,
1 500)).

(1)求居民收入在[3 000,3 500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为调查某地区大学生是否爱好某项体育运动,用简单随机抽样方法从该地区的大学里调查了500位大学生,结果如下:
 


爱好
40
30
不爱好
160
270
(1)  估计该地区大学生中,爱好该项运动的大学生的比例;
(2)  能否有99%的把握认为该地区的大学生是否爱好该项体育运动与性别有关?
附:

0.050
0.010
0.001

3.841
6.635
10.828

查看答案和解析>>

同步练习册答案