精英家教网 > 高中数学 > 题目详情
4.正六边形ABCDEF中,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{FA}$=$\overrightarrow{b}$,则$\overrightarrow{BC}$=$\overrightarrow{a}$-$\overrightarrow{b}$.(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

分析 连接FC,则$\overrightarrow{FC}$=2$\overrightarrow{AB}$=2$\overrightarrow{a}$,又因为$\overrightarrow{FC}$=$\overrightarrow{FA}$$+\overrightarrow{AB}$$+\overrightarrow{BC}$,得到$\overrightarrow{BC}$=$\overrightarrow{FC}$-$\overrightarrow{FA}$$-\overrightarrow{AB}$.

解答 解:∵正六边形ABCDEF,
∴$\overrightarrow{FC}$=2$\overrightarrow{AB}$=2$\overrightarrow{a}$,
∵$\overrightarrow{FC}$=$\overrightarrow{FA}$$+\overrightarrow{AB}$$+\overrightarrow{BC}$,
∴$\overrightarrow{BC}$=$\overrightarrow{FC}$-$\overrightarrow{FA}$$-\overrightarrow{AB}$=2$\overrightarrow{a}$$-\overrightarrow{b}$$-\overrightarrow{a}$=$\overrightarrow{a}$-$\overrightarrow{b}$.
故答案为$\overrightarrow{a}$-$\overrightarrow{b}$.

点评 本题考查了平面向量加法的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知命题p:椭圆方程$\frac{{x}^{2}}{2m-8}$+$\frac{{y}^{2}}{m-3}$=1.表示焦点在y轴上的椭圆;命题q:复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点在第三象限.
(1)若命题p为真命题,求实数m的范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆的切线长与|MQ|的比值分别为1或2时,分别求出点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若向量$\overrightarrow{a}$=(-3,5),$\overrightarrow{b}$=(x,y),且2$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则(x,y)等于(  )
A.(6,-10)B.(-6,10)C.(-$\frac{3}{2}$,$\frac{5}{2}$)D.($\frac{3}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若$\frac{b}{c}=\frac{3}{5}$,则$\frac{sinB+2sinC}{sinC}$=$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,棱长为2的正方体ABCD-A1B1C1D1中,点E,F在线段A1B1上运动,且|EF|=1,点G在线段AD上运动,H是线段CD的中点,设DG=x(0<x<2),则三棱锥G-EFH的体积V(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(1)求椭圆的方程;    
(2)若直线l:y=kx+3与椭圆恒有不同交点A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>1(O为坐标原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则($\overrightarrow{a}$+$\overrightarrow{b}$)2=$25-12\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正三棱锥V-ABC中,底面边长为8,侧棱长为2$\sqrt{6}$,计算它的高和斜高.

查看答案和解析>>

同步练习册答案