精英家教网 > 高中数学 > 题目详情
6.i是虚数单位,若集合S={-1,0,1},则(  )
A.i3∈SB.i6∈SC.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3⊆SD.{(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2}⊆S

分析 分别对A、B、C、D各个选项进行分析,从而求出结论.

解答 解:∵i6=-1,-1∈S,
故选:B.

点评 本题考查了元素和集合、集合和集合的关系,考查复数的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列赋值语句正确的是(  )
A.3=XB.Y=-Y+1C.X+Y=2D.X=Y=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{x}{{e}^{cosx}}$(-π≤x≤π)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)化简:$\frac{{sin(\frac{π}{2}+α)•cos(3π-α)•tan(π+α)}}{{cos(\frac{π}{2}-α)•cos(-π+α)}}$
(2)已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.解不等式|2x-1|+|x+1|<3的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn.已知a1=2,Sn+1=4an+2.
(1)求a2的值;
(2)设bn=an+1-2an,数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)={x^0}+\sqrt{x(x-2)}$的定义域是(-∞,0)∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x.y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则实数a的取值范围为(  )
A.(-3,6))B.(3,6)C.(-6,3))D.[-3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{{\;}\right._{2f(x-2),x∈(0,+∞)}^{1-|x+1|,x∈[-2,0]}$,则下列说法中错误的是(  )
A.f(x)的单调递减区间为[2n-3,2n-2](n∈N*)
B.f(x)的值域为[0,+∞)
C.方程f(x)=1在区间[-2,2n]上所有根的个数为2n+1(n∈N)
D.若方程f(x)=x+2在区间[-2,4]内有3个不等实根,则实数的取值范围是-2<a≤0

查看答案和解析>>

同步练习册答案