精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{f(2x),0<x<1}\end{array}\right.$,则f[f($\sqrt{2}$)]=0.

分析 先求内后求外,从而可得f($\sqrt{2}$)=log2$\sqrt{2}$=$\frac{1}{2}$,再求f($\frac{1}{2}$)即可.

解答 解:f($\sqrt{2}$)=log2$\sqrt{2}$=$\frac{1}{2}$,
f[f($\sqrt{2}$)]=f($\frac{1}{2}$)=f(1)=log21=0,
故答案为:0.

点评 本题考查了分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设a、b、c均为正数,且a+b+c=1,证明:
(1)$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥1                              
(2)ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(1)已知p2+q2=2,求证p+q≤2.用反证法证明时,可假设p+q≥2;(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是(  )
A.(1)的假设正确,(2)的假设错误B.(1)与(2)的假设都正确
C.(1)的假设错误,(2)的假设正确D.(1)与(2)的假设都错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,则$\frac{2i}{1+i}$-1=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“?x>0,ex≥1”,则¬p为(  )
A.?x≤0,使得ex≤1B.?x≤0,使得ex<1C.?x>0,使得ex<1D.?x>0,使得ex≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${\int_1^2x^2}dx$=(  )
A.$\frac{7}{3}$B.3C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=-12x+x3的单调递减区间为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-2,2)C.(0,2)D.(-∞,-2),(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知z1,z2是两个虚数,并且z1+z2与z1z2均为实数,求证:z1,z2是共轭复数
(2)求证:无论θ为何值,方程x2-(tanθ+i)x-(i+2)=0都不可能有纯虚数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求证:方程3x2-10xy+3y2+9x+5y-12=0表示两条直线.

查看答案和解析>>

同步练习册答案