精英家教网 > 高中数学 > 题目详情
4、若函数f(x)=kax-a-x(a>0且a≠1)既是奇函数,又是增函数,那么g(x)=loga(x+k) 的图象是(  )
分析:由函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.
解答:解:∵函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是奇函数
则f(-x)+f(x)=0
即(k-1)ax-a-x=0
则k=1
又∵函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是增函数
则a>1
则g(x)=loga(x+k)=loga(x+1)
函数图象必过原点,且为增函数
故选D
点评:若函数在其定义域为为奇函数,则f(-x)+f(x)=0,若函数在其定义域为为偶函数,则f(-x)-f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数-减函数=增函数也是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数)对任给的正数m,
存在相应的x0∈D使得当x∈D且x>x0时,总有
0<f(x)-h(x)<m
0<h(x)-g(x)<m
,则称直线l:y=ka+b为曲线y=f(x)和y=g(x)的“分渐进性”.给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=x2,g(x)=
x
②f(x)=10-x+2,g(x)=
2x-3
x
③f(x)=
x2+1
x
,g(x)=
xlnx+1
lnx
④f(x)=
2x2
x+1
,g(x)=2(x-1-e-x
其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是(  )
A、①④B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=
1
2
时,判断函数f(x)=
x
是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=
1
2
0时,若函数f(x)=
x
+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏期中题 题型:解答题

函数f(x)=ka﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求函数f(x)的解析式;
(2)若函数,试判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=
1
2
时,判断函数f(x)=
x
是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=
1
2
0时,若函数f(x)=
x
+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中高一(上)段考数学试卷(解析版) 题型:解答题

集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=时,判断函数f(x)=是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=0时,若函数f(x)=+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案